K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

Theo bài ra ta có :

p là SNT lớn hơn 3 (1)

2p + 1 là SNT (2)

Vì p là SNT lớn hơn 3 (theo (1) ) nên p có 2 dạng : 3k+1 hoặc 3k+2 ( k là STN )

* Nếu p = 3k+1 thì :

2p+1 = 2(3k+1)+1=6k+3=3(2k+1) chia hết cho 3 hay 2p+1 chia hết cho 3 (3)

Mà p>3 => 2p+1>3 (4)

Từ (3) và (4) => 2p+1 là hợp số ( trái với (2) , loại )

Vậy p=3k+2

=> 4p+1=4(3k+2)+1=12k+9 = 3(4k+3) chia hết cho 3  hay 4p+1 chia hết cho 3 (5)

Mà p>3 => 4p+1>3 (6)

Từ (5) và (6) => 4p+1 là hợp số 

=> đpcm

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

Do đó 4p + 1 là hợp số (.)

tick nhé

30 tháng 10 2015

P là  số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

29 tháng 10 2015

 

Vì p là số nguyên tố > 3 nên p có 2 dạng:

+ Nếu p = 3n + 1(n thuộc N) thì thay vào 2p + 1, ta có:

2(3n + 1) + 1 = 6n + 2 + 1 = 6n + 3 là hợp số (loại)

+ Nếu p = 3n + 2(n thuộc N) thì thay vô 2p + 1, ta có:

2(3n + 2) + 1 = 6n + 4 + 1 = 6n + 5

Vì 6 chia hết cho 3 => 6n chia hết cho 3

Mà 5 không chia hết cho 3 nên 2p + 1 là số nguyên tố (chọn)

Thay p = 3n + 2 vào 4p + 1, ta có:

4(3n + 2) + 1 = 12n + 8 + 1 = 12n + 9

Vì 12 chia hết cho 3 nên 12n chia hết cho 3

Mà 9 chia hết cho 3 nên 12n + 5 là hợp số hay 4p + 1 là hợp số

Tick cho mình nha

29 tháng 10 2015

p là số nguyên tố lớn hơn 3 nên p có dạng : 3k+1 hoặc 3k+2                                                                                                                        Xét trường hợp p=3k+1 ta có 2n+1=2(3k+1)+1=6k +2+1=6k+3(chia hết cho 3 nên là hợp số)Loại                                                                  Xét trường hợp p=3k+2 ta có 2n+1 =2(3k+2)+1=6k+4+1=6k+5(là số nguyên tố nên ta chọn trường hợp này)                                                     Vậy 4p+1=4(3k+2)+1=12k+8+1=12k+9 ta thấy 12k và 9 đều chia hết cho 3 nên (12k+9) là hợp số                                                                 Do đó 4p+1 là hợp số

24 tháng 1 2017

\(\hept{\begin{cases}p>3\\2p+1\end{cases}\Rightarrow p=3k+2}\left(k\ge1\right)\)nếu là 3k+1=> 2p+1=6k+3 không nguyên tố

với p=3k+2=> 4p+1=4(3k+2)+1=12k+9 luôn chia hết cho 3=> Hợp số => dpcm

11 tháng 11 2014

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

16 tháng 4 2016

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

19 tháng 10 2016

P là số nguyên tố lớn hơn 3 => P=3k+1 hoặc P=3k+2

=> 4P+1=12k+2 hoặc =12k+3

vậy là hợp số

24 tháng 2 2017

P là số nguyên tố lớn hơn 3 nên P có 2 trường hợp \(\hept{\begin{cases}3k+1\\3k+2\end{cases}}\)

Xét trường hợp 1) \(P=3k+1\)

Ta có \(2P+1=2\left(3k+1\right)+1=6k+2+1=6k+2+1=6k+3\left(⋮3\right)\)nên là hợp số (loại)

Xét trường hợp 2) \(P=3k+2\)

Ta có \(2P+1=2\left(3k+2\right)+1=6k+4+1=6k+5\) là số nguyên tố theo đề bài nên ta chọn

Vậy \(4P+1=4\left(3k+2\right)+1=12k+8+1=12k+8+1=12k+9\) thấy \(12k\) và \(9\)đều \(⋮3\) nên \(12k+9\) là hợp số

Từ đó,suy ra \(4P+1\) là hợp số 

\(\Rightarrowđpcm\)

23 tháng 11 2023

là hợp số nhé!

17 tháng 4 2019

Cho p là mt snguyên tlớn hơn 3 và 2p + 1 cũng là mt snguyên t, thì 4p + 1 là snguyên tố hay hp số? Vì sao?

p và 2p+1 nguyên tố

Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố

Xét p chia hết cho 3

=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3

=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)

=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3