K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MD
1
MD
0
NT
0
A
0
26 tháng 3 2020
Câu hỏi của Đoàn Minh Vũ - Toán lớp 6 - Học toán với OnlineMath
G
0
Lời giải:
Ta sẽ đi chứng minh \(A=(p+23)(p+25)\vdots 3\) và $8$
Thật vậy.
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng \(3k+1\) hoặc \(p=3k+2\)
\(\bullet p=3k+1\Rightarrow p+23=3k+24=3(k+8)\vdots 3\)
\(\Rightarrow A=(p+23)(p+25)\vdots 3\)
\(\bullet p=3k+2\Rightarrow p+25=3k+27=3(k+9)\vdots 3\)
Từ 2 TH trên suy ra \(A\vdots 3(*)\)
Mặt khác, vì $p$ là snt lớn hớn $3$ nên $p$ lẻ. Do đó $p$ có dạng $4t+1$ hoặc $4t+3$
\(\bullet p=4t+1\Rightarrow A=(4t+24)(4t+26)=8(t+6)(2t+13)\vdots 8\)
\(\bullet p=4t+3\Rightarrow A=(4t+26)(4t+28)=8(2t+13)(t+7)\vdots 8\)
Từ 2 TH trên suy ra \(A\vdots 8(**)\)
Từ \((*); (**)\) mà $(3,8)$ nguyên tố cùng nhau nên $A\vdots (3.8)$ hay $A\vdots 24$
Lời giải:
Ta sẽ đi chứng minh A=(p+23)(p+25)⋮3A=(p+23)(p+25)⋮3 và 88
Thật vậy.
Vì pp là số nguyên tố lớn hơn 33 nên pp không chia hết cho 33. Do đó pp có dạng 3k+13k+1 hoặc p=3k+2p=3k+2
∙p=3k+1⇒p+23=3k+24=3(k+8)⋮3∙p=3k+1⇒p+23=3k+24=3(k+8)⋮3
⇒A=(p+23)(p+25)⋮3⇒A=(p+23)(p+25)⋮3
∙p=3k+2⇒p+25=3k+27=3(k+9)⋮3∙p=3k+2⇒p+25=3k+27=3(k+9)⋮3
Từ 2 TH trên suy ra A⋮3(∗)A⋮3(∗)
Mặt khác, vì pp là snt lớn hớn 33 nên pp lẻ. Do đó pp có dạng 4t+14t+1 hoặc 4t+34t+3
∙p=4t+1⇒A=(4t+24)(4t+26)=8(t+6)(2t+13)⋮8∙p=4t+1⇒A=(4t+24)(4t+26)=8(t+6)(2t+13)⋮8
∙p=4t+3⇒A=(4t+26)(4t+28)=8(2t+13)(t+7)⋮8