\(2^p-1\)đều lớn hơn p

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...

20 tháng 8 2017

Nhầm !~ Bài này tớ chịu !~ Sr TT

30 tháng 1 2020

a, Số dư luôn <3

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

11 tháng 12 2016

P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8 

( vì k(k+1) chia hết cho 2 với mọi k thuộc n) 

P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2

. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N

. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N

(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24

26 tháng 3 2017

cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24 
các bạn giải hộ mình vs

9 tháng 12 2018

mình chia thành hai phần a và b

a) Mọi số nguyên tố n lớn hơn 2 đều không chia hết cho 2 ---> n có dạng 2k+1 (n thuộc N, n> 0) 
...Xét 2 TH : 
...+n chẵn (k = 2n) ---> n = 2k+1 = 2.2n + 1 = 4n+1 
...+ n lẻ (k = 2n-1) ---> n= 2k+1 = 2.(2n-1) + 1 = 4n-1 
...Vậy n luôn có dạng 4n+1 hoặc 4n-1 

b) Mọi số nguyên tố n lớn hơn 3 đều ko chia hết cho 3 ---> n có dạng 3k+1 hoặc 3k-1 
...Nếu k lẻ thì n sẽ chẵn và nó ko phải là số nguyên tố (vì n > 3). 
...Vậy k phải chẵn, k = 2n với n > 0 (để n > 3).Xét 2 TH : 
...+ n = 3k+1 = 3.2n + 1 = 6n+1 
...+ n = 3k-1 = 3.2n -1 = 6n - 1 
...Vậy n luôn có dạng 6n+1 hoặc 6n-1.

9 tháng 12 2018

kb với mình luôn