\(7p+3^p-4\) không là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Cách giải giống câu này luôn.

Câu hỏi của Nguyễn Linh Chi - Toán lớp 9 - Học toán với OnlineMath

Chứng minh bằng cách phản chứng

Giả sử tồn tại số nguyên tố p thõa mãn

Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )

* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn

* Nếu p > 3 , p lẻ

+ ) p = 4k + 1

Ta có : 3 ≡ - 1 ( mod4 )

nên 3p ≡ - 1 ( mod4 )

và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )

Do đó VT  ≡ VP ≡ - 1 ( mod4 ) ( vô lí )

+ ) p = 4k + 3

Theo định lí Fermat ta có :

3p  ≡ 3 ( modp )

và 19 ( p - 1 ) ≡ - 19 ( modp )

nên VT ≡ - 16 ( modp )

Do đó n2 + 16 \(⋮\) p

Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )

Vậy ta có đpcm

Gỉa sử tồn tại số nguyên p thỏa mãn 

Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )

* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn 

* Nếu p>3 , p lẻ 

+) p=4k +1

Ta có 

\(3=-1\left(modA\right)\)

nên : \(3^p=-1\left(modA\right)\)

Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)

Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )

+) p=4k+3

Theo định lí Fermat ta có 

\(3^p=3\left(modp\right)\)

và \(19\left(p-1\right)\equiv-19\left(modp\right)\)

nên \(VT\equiv-16\left(modp\right)\)

Do đó : \(n^2+16⋮p\)

-> Ta có : \(4⋮b\)( vô lí )

Vậy ta có đpcm 

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

3 tháng 4 2020

1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

25 tháng 4 2019

chồi e mới lớp 6

e mà làm đc bài này chắc e đã là thần đồng đất việt rùi

25 tháng 4 2019

Mày khùng à, ko biết thì biến

26 tháng 11 2019

Vì d là ước nguyên dương của \(2n^2\)

\(\Rightarrow2n^2=kd\)

\(\Rightarrow d=\frac{2n^2}{k}\forall k\inℕ^∗\)

Giair sử \(n^2+d=a^2\)

\(\Leftrightarrow n^2+\frac{2n^2}{k}=a^2\)

\(\Leftrightarrow n^2k^2+2n^2k=a^2k^2\)

\(\Leftrightarrow n^2\left(k^2+2k\right)=\left(ak\right)^2\)

Vô lí vì \(k^2< k^2+2k< \left(k+1\right)^2\) nên không là số chính phương 

\(\Rightarrow\) Giả sử là sai 

\(\Rightarrow n^2+d\) không phải là sôc chính phương ( đpcm )

2 tháng 4 2023

Hay