K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

22 tháng 10 2015

câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3

=>16p(8p+1)(4p+1) chia het cho 3

mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

24 tháng 7 2016

 1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích tớ nha

24 tháng 7 2016

1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích nha

6 tháng 11 2015

p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)

+) Nếu = 3k + 1 => p+2 = 3k + 3 = 3(k + 1) là hợp số => Loại

Vậy p = 3k + 2. Vì p nguyên tố nên k lẻ (nếu k chẵn thì 3k + 2 chẵn)

=> p + (p + 2) = 3k + 2 + (3k + 2 + 2) = 6k + 6 = 6.(k + 1) mà k + 1 chia hết cho 2 do k lẻ 

Nên 6(k + 1) chia hết cho 6.2 = 12

Vậy p + (p + 2) chia hết cho 12