K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

Ta chứng minh p + 1 \(⋮\)2,3

- Vì p là số nguyên tố lớn hơn 3

=> p + 1 = 2k + 1 => p + 1 = 2k + 1 + 1 = 2k + 2 = 2 ( k + 1)

Mà : k + 1 \(\in\) N => 2 ( k + 1 ) \(⋮\)2 (1)

- Vì p là số nguyên tố lớn hơn 3

=> p = 3k + 1 hoặc p = 3k + 2

+ Trường hợp 1 : p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 )

Mà : k + 1 \(\in\) N ; p > 3 => k \(\ge\) 1 => 3 ( k + 1 ) là hợp số

=> p + 2 là hợp số ( vô lý )

=> p = 3k + 2 => p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 )

Mà : k + 1 \(\in\) N => 3 ( k + 1 ) \(⋮\)3 hay p + 1 \(⋮\)3 (2)

Từ (1) và (2) => p + 1 \(⋮\)6 (đpcm)

7 tháng 12 2016

bạn ơi tai sao 2k + 1 = 2k +1+1

20 tháng 4 2016

Nếu P là số nguyên tố mà P+2 cũng là số nguyên tố thì P phải là con số 5.

Có P là 5 thì ta có: P+2=5+2=7 (là số nguyên tố)

Và P+1=5+1=6

Suy ra P+1 chia hết cho 6

DD
2 tháng 10 2021

\(p>3\)suy ra \(p+2>3\).

Có \(p,p+1,p+2\)là \(3\)số tự nhiên liên tiếp nên trong đó có \(1\)số chia hết cho \(3\), mà \(p,p+2\)là các số nguyên tố lớn hơn \(3\)do đó \(p+1\)chia hết cho \(3\).

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ suy ra \(p+1\)là số chẵn nên \(p+1\)chia hết cho \(2\).

Có \(\left(2,3\right)=1\)nên \(p+1\)chia hết cho \(2.3=6\).

Ta có đpcm. 

5 tháng 8 2016

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

Suy rea:p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Chúc bạn học tốt Trafalgar

13 tháng 12 2015

vì p là SNT lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2 và p lẻ  (K thuộc N*)
Mà p+2 cũng là SNT nên p có dạng 3k+2
p+1=3k+2+1=3(k+1) chia hết cho 3
Mà p lẻ => p +1 chia hết cho 2
=> p chia hết cho 6

8 tháng 1 2017

+ Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3

Do p và p + 2 là 2 số nguyên tố > 3 => p và p + 2 không chia hết cho 3

=> p + 1 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)

Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)

k mk nha mk cần điểm hỏi đáp

5 tháng 8 2016

+ Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2, trong 3 số này có 1 số chia hết cho 3

Do p và p + 2 là 2 số nguyên tố > 3 => p và p + 2 không chia hết cho 3

=> p + 1 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)

Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

22 tháng 2 2018

29 tháng 11 2018

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1 ⋮ 2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+13 (2).

Từ (1) và (2) cho ta p+16