K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

NX : 195457 ⋮ 4195457 ⋮ 4

* pp là SNT >5>5 nên p2≡1(mod4)p2≡1(mod4). Do đó N ⋮ 4N ⋮ 4

* pp là SNT >5>5 nên p2≡1(mod3)p2≡1(mod3). Do đó N ⋮ 3N ⋮ 3

* pp là SNT >5>5 nên p4≡1(mod5)p4≡1(mod5). Do đó N ⋮ 5N ⋮ 5

Vậy suy ra N ⋮ (3.4.5)N ⋮ (3.4.5) tức là N ⋮ 60N ⋮ 60.

22 tháng 4 2019

đầu tiên . CM : \(1954^{5^7}\)= 4m với m nguyên dương

ta sẽ chứng minh bài toán tổng quát p4m - 1 \(⋮\)60 với mọi p nguyên tố > 5 và mọi SND m

thật vậy , p4m - 1 = ( p4 )m - 1m = ( p4 - 1 ) . A = ( p - 1 ) ( p + 1 ) ( p2 + 1 ) . A ( A thuộc N )

do p lẻ nên p-1,p+1 là 2 số chẵn liên tiếp suy ra ( p - 1 ) ( p + 1 ) \(⋮\)4 ( 1 )

Mà ( p - 1 ).p.(p+1 ) \(⋮\)3 . p \(⋮̸\)3  \(\Rightarrow\)( p - 1 ) ( p + 1 ) \(⋮\)3 ( 2 )

do p \(⋮̸\)5 nên p có các dạng \(\mp5k+1,\mp5k+2\)

nếu p = 5k +- 1 \(\Rightarrow\)p2 = \(25k^2\mp10k+1=5n+1\)

nếu p = 5k +- 2 \(\Rightarrow\)p2 = \(25k^2\mp20k+4=5q-1\)

\(\Rightarrow\)p4 - 1 \(⋮\)5   ( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)....

23 tháng 11 2016

xl mink gần ra oy 

10 tháng 7 2018

ai làm dược bài 1 mình tích cho

2 tháng 9 2018

Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )

=> A = 21^5 - 1 chia hết cho 20 

=> A = 21^10 - 1 chia hết 400

=> A= 21^10 - 1 chia hết cho 200

a) \(n^3-n\)

\(=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3

2 câu sau tương tự nhen