Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể chứng minh đẳng thức sau :
\(rC^r_n=nC^{r-1}_{n-1}\) \(\left(r=1,2,3,....,n-1\right)\)
Vì \(n\) là số nguyên tố và \(r< n\), nên \(n\) là ước của \(C^r_n\)
Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).
Theo bài ta có phương trình :
\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)
\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)
\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)
\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)
\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))
\(\Leftrightarrow n=18\)
Vậy đa giác đều có 16 cạnh, (thập lục giác đều)
a) 1110 – 1 = (1 + 10)10 – 1 = (1 + C110 10 + C210102 + … +C910 109 + 1010) – 1
= 102 + C210102 +…+ C910 109 + 1010.
Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.
b) Ta có
101100 – 1 = (1 + 100)100 - 1
= (1 + C1100 100 + C2100 1002 + …+C99100 10099 + 100100) – 1.
= 1002 + C21001002 + …+ 10099 + 100100.
Tổng sau cùng chia hết cho 10 000 suy ra 101100 – 1 chia hết cho 10 000.
c) (1 + √10)100 = 1 + C1100 √10 + C2100 (√10)2 +…+ (√10)99 + (√10)100
(1 - √10)100 = 1 - C1100 √10 + C2100 (√10)2 -…- (√10)99 + (√10)100
√10[(1 + √10)100 – (1 - √10)100] = 2√10[C1100 √10 + C3100 (√10)3 +…+ . (√10)99]
= 2(C1100 10 + C3100 102 +…+ 1050)
Tổng sau cùng là một số nguyên, suy ra √10[(1 + √10)100 – (1 - √10)100] là một số nguyên.
a) \(11^{10}-1=\left(10+1\right)^{10}-1\)\(=C^0_{10}10^{10}+C^1_{10}10^9+...+C^9_{10}10+C^{10}_{10}-1\)
\(=10^{10}+C^1_{10}10^9+...+C^8_{10}10^2+10.10\) chia hết cho 100.
b) \(\left(101\right)^{100}-1=\left(100+1\right)^{100}-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^1_{100}100+C_{100}^{100}100^0-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+100.100+1-1\)
\(=100^{100}+C_{100}^{99}100^{99}+....+C^2_{100}100^2+10000\) chia hết cho 10000.