Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)
\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)
\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)
\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
2)
\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)
\(=\sqrt{12,1.36.10}\)
= \(\sqrt{121.36}\)
\(=\sqrt{4356}\)
\(=66\)
3)
\(\sqrt{5a}.\sqrt{45a}-3a\)
\(=\sqrt{5.45a^2}-3a\)
\(=\sqrt{225a^2}-3a\)
\(=\sqrt{\left(15a\right)^2}-3a\)
\(=-15a-3a\) ( vì \(a\le0\))
\(=-18a\)
5)
\(\sqrt{0,36a^2}\)
\(=\sqrt{\left(0,6a\right)^2}\)
\(=-0,6a\) ( vì \(a< 0\) )
Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.
Chúc bạn học tốt!
1)
\(\sqrt{3a^3}.\sqrt{12}\)
\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)
\(=\sqrt{3.12}.\sqrt{a^3}\)
\(=6\sqrt{a^3}\)
4)
\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)
\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)
\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)
\(=54a^3-6\sqrt{a^2}\)
\(=54a^3-6a^2\) ( vì a<0)
6)
\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)
\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)
\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)
\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)
Mà\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)
\(=a^2\left(a-3\right)\)
\(=a^3-3a^2\)
Còn lại bạn làm tương tự nha, trể quá rùi :)))))
1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)
b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)
c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)
d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)
2.
a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)
b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)
d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)
Đặt biểu thức trên là N, ta có:
\(N=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a\ge2\right)\)
\(\Leftrightarrow N=\frac{\left(a^3-3a-2\right)+\left(a^2+1\right)\sqrt{a^2-4}}{\left(a^3-3a+2\right)+\left(a^2+1\right)\sqrt{a^2-4}}\)
\(\Leftrightarrow N=\frac{\left(a-2\right)\left(a+1\right)^2+\left(a-1\right)\left(a+1\right)\sqrt{a^2-4}}{\left(a+2\right)\left(a-1\right)^2+\left(a-1\right)\left(a+1\right)\sqrt{a^2-4}}\)
\(\Leftrightarrow N=\frac{\sqrt{a-2}\left(a+1\right)\left[\sqrt{a-2}\left(a+1\right)+\left(a-1\right)\sqrt{a+2}\right]}{\sqrt{a+2}\left(a-1\right)\left[\sqrt{a+2}\left(a-1\right)+\left(a+1\right)\sqrt{a-2}\right]}\)
\(\Leftrightarrow N=\frac{\sqrt{a-2}\left(a+1\right)}{\sqrt{a+2}\left(a-1\right)}\)
(Chúc bạn học tốt và nhớ tíck cho mình với nhá!)