Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{2011}{2012+2013+2014}+\frac{2012}{2012+2013+2014}+\frac{2013}{2012+2013+2014}\)
A= \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
Xét từng số hạng của A và B
\(\frac{2011}{2012}>\frac{2011}{2012+2013+2014}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013+2014}\)
\(\frac{2013}{2014}>\frac{2013}{2012+2013+2014}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}>\frac{2011+2012+2013}{2012+2013+2014}\)
\(\Rightarrow A>B\)
Đề bạn ghi có hơi sai chút nên tự tự sửa lại nha!
AM-GM:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2010}\ge4\sqrt[4]{\frac{2010.2011.2012.2013}{2011.2012.2013.2010}}=4\sqrt[4]{1}=4\)
\(\Rightarrow S\ge4\)
^^
Ta có :
\(Q=\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì :
\(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\)\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow\)\(P>Q\)
Vậy \(P>Q\)
Chúc bạn học tốt ~
Sửa lại:
Ta có:
\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Vì \(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B
Từ đó A > B
Vậy A > B
Có:
\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)
\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)
Mà \(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)
\(\Rightarrow2009A>2009B\)
\(\Rightarrow A>B\)
Vậy A > B
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
P=\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2014-1}{2014}+\frac{2015-1}{2015}\)
=\(1-\frac{1}{2012}+1-\frac{1}{2013}+1-\frac{1}{2014}+1-\frac{1}{2015}\)
=\(4-\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)\)
VẬY P<4
\(\orbr{\begin{cases}\orbr{\begin{cases}\frac{2011}{2012}< 1\\\frac{2012}{2013}< 1\end{cases}}\\\orbr{\begin{cases}\frac{2013}{2014}< 1\\\frac{2014}{2015}< 1\end{cases}}\end{cases}\Rightarrow P< 1+1+1+1=4}\)