\(\frac{1}{2000.1999}-\frac{1}{1999.1998}-....-\frac{1}{3.2}-\frac{1}{2.1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

P=(1/2000*1999)-(1/1999*1998)-...-(1/3*2)-(1/2*1)

P=(1/2000*1999)- [(1/1999*1998)+(1/1998*1997)+...+(1/2*1)]

P=(1/2000*1999)-[(1/1999)-(1/1998)+(1/1998)-(1/1997)+...+(1/2)-1]

P=(1/2000*1999)-[(1/1999)+1]

P=(1/3998000)-(2000/1999)

P=( -3999999/3998000

31 tháng 12 2016

1023/1024 là đáp số đúng

27 tháng 1 2017

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)

\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)

\(=\frac{-1}{2000}\)

27 tháng 1 2017

P= \(\frac{1}{2000.1999}\)-  (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))

  = \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

  = \(\frac{-1997}{1999}-\frac{1}{2000}\)

 =) P + \(\frac{1997}{1999}\)\(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)

1 tháng 1 2017

Ta có:

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow P=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow P=\frac{-1997}{1999}-\frac{1}{2000}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1997}{1999}-\frac{1}{2000}+\frac{1}{1997}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{2000}\)

Vậy....

31 tháng 12 2016

Nguyễn Huy Thắng

Trần Việt Linh

Trương Hồng Hạnh

31 tháng 12 2016

khỏi cần nx nhé!

13 tháng 2 2017

Số hạng đầu tiên không theo quy luật hả (+) hày (-) đề thế nào làm vậy:

\(P=\frac{1}{2000.1998}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{1998.1999}\right)=\frac{1}{1999.2000}-Q\)

Tổng quát ta có \(\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}\) với dãy trên ta luôn có b-a=1

\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-.....-\frac{1}{1999}\)

\(Q=1-\frac{1}{1999}\Rightarrow P=\frac{1}{1999.2000}-1+\frac{1}{1999}=\frac{1-1999.2000+2000}{1999.2000}=\frac{1-1998.2000}{1999.2000}\)

\(P+\frac{1997}{1998}=\frac{1997}{1998}+\frac{1-1998.2000}{1999.2000}\) xem lại đề

29 tháng 12 2016

Hôm kia giải thi chơi được 260, làm được bài này luôn. Hôm sau, làm lại chả biết làm.

3 tháng 2 2017

\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\right)\)

\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\right)\)

\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{2000}\right)\)

\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1999}{2000}\)

\(\Rightarrow P=\frac{1}{1999}-1\)

\(\Rightarrow P=\frac{-1998}{1999}\)

\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{1999}\)

Vậy...

3 tháng 2 2017

Thanks bn nha

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)

\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)

3 tháng 1 2017

\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+..+\frac{1}{3.2}+\frac{1}{2.1}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{1999}-\frac{1}{2000}\)

=\(1-\frac{1}{2000}\)

=\(\frac{1999}{2000}\)

27 tháng 12 2016

3) 2x3-1=15 <=> x3=16/2=8=23 => x=2

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}=\frac{x+y+z}{50}\)

=> \(\frac{x+16}{9}=\frac{x+y+z}{50}\)=> x+y+z=\(\frac{50\left(x+16\right)}{9}\)=\(\frac{50\left(2+16\right)}{9}=\frac{50.18}{9}=50.2=100\)

Vậy x+y+z=100

27 tháng 12 2016

Mọi người giúp tôi ik mai tôi phải thi rồi !

20 tháng 8 2018

câu b sai đề bạn ơi

20 tháng 8 2018

a)

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n}{n+1}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot n}{2\cdot3\cdot4\cdot...\cdot\left(n+1\right)}\)

\(=\frac{1}{n+1}\)

29 tháng 12 2016

$$\begin{array}{rcl}
\dfrac1{2000 \cdot 1999} - P &=& \dfrac1{1\cdot 2} + \dfrac1{2\cdot 3} + \ldots + \dfrac1{1998 \cdot 1999} \\
&=& \dfrac11 - \dfrac12 + \dfrac12 - \dfrac13 + \ldots + \dfrac1{1998} - \dfrac1{1999} \\
&=& 1 - \dfrac1{1999} \\
\implies P &=& \dfrac1{2000 \cdot 1999} - \left( 1 - \dfrac1{1999} \right) = -\dfrac{3995999}{3998000} \\
\end{array}$$

29 tháng 12 2016

Nguyễn Huy Thắng

Nguyễn Huy Tú

soyeon_Tiểubàng giải