K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Có : P = (4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^10+4^11+4^12)

= 4.(1+4+4^2)+4^4.(1+4+4^2)+....+4^10.(1+4+4^2)

= 4.21+4^4.21+....+4^10.21

= 21.(4+4^4+...+4^10) chia hết cho 21

=> ĐPCM 

k mk nha

15 tháng 11 2017

\(P=4+4^2+4^3+4^4+...+4^{11}+4^{12}\)

\(P=4\cdot1+4.4+4.16+4^4\cdot1+...+4^{10}\cdot1+4^{10}\cdot4+4^{10}\cdot16\)

\(P=4\left(1+4+16\right)+4^4\left(1+4+16\right)+...+4^{10}\left(1+4+16\right)\)

\(P=4\cdot21+4^4\cdot21+4^7\cdot21+4^{10}\cdot21\)

\(P=21\left(4+4^4+4^7+4^{10}\right)\)

Vi  \(21⋮21\Rightarrow P⋮21\)

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

30 tháng 10 2016

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)

A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)

A = 5460.(1+4^6+4^12+4^18)

A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420

A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21

12 tháng 8 2017

a) 4.(1+4)+43.(1+4)+................+459(1+4)

=5.4+5.43+...+5.459

=5.(4+43+.+459) chia hết cho 5

4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)

=21.4+44.21+..+21.458

=21.(4+44+.+458) chia hết cho 21

b) 5.(1+5)+53(1+5)+.+59(1+5)

=6.(5+53+.............+59) chia hết cho 6

23 tháng 7 2018

a) Đặt biểu thức trên là A, ta có:

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)

=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)

=> A = 4 . 5 + 43 . 5 + ... + 459 . 5

=> A = 5(4 + 43 + ... + 459)

=> A ⋮ 5

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)

=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)

=> A = 4 . 21 + 44 . 21 + ... + 458 . 21

=> A = 21(4 + 44 + ... + 458)

=> A ⋮ 21

b) Đặt biểu thức trên là B, ta có:

B = 5 + 52 + 53 + 54 + ... + 510

=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)

=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)

=> B = 5 . 6 + 53 . 6 + ... + 59 . 6

=> B = 6(5 + 53 + ... + 59)

=> B ⋮ 6  

26 tháng 10 2016

gộp 1 tổng 3 số rồi làm nha mình ko chỉ thêm đâu

16 tháng 8 2017

\(C=1+4+4^2+4^3+4^4+....+4^{20}\)

\(C=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\)

\(C=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{18}\left(1+4+4^2\right)\)

\(C=\left(1+4+4^2\right)\left(1+4^3+...+4^{18}\right)\)

\(C=21.\left(1+4^3+...+4^{18}\right)\)

Vì 21 chia hết cho 21 nên \(21.\left(1+4^3+...+4^{18}\right)\) chia hết cho 21(đpcm)

Chúc bạn học tốt!!!

16 tháng 8 2017

\(C=1+4+4^1+4^2+4^3+4^4+...+4^{20}\)

\(C=\left(1+4+4^2\right)+\left(4^2+4^3+4^4\right)+...+\left(4^{18}+4^{19}+4^{20}\right)\) \(C=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{18}.\left(1+4+4^2\right)\)

\(C=\left(1+4+4^2\right).\left(1+4^3+...+4^{18}\right)\)

\(C=21.\left(1+4^3+...+4^{18}\right)\)

\(21⋮21\) \(\Rightarrow21.\left(1+4^3+...+4^{18}\right)\)

Vậy \(C⋮21\)

26 tháng 10 2016

A = \(4^0\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(21\left(4^0+4^3+...+4^{57}\right)\) chia hết cho 21

Hình như số cuối phải là 4^59 chứ nhỉ ??

26 tháng 10 2016

4^59 ạ,cj giải lại cho em đc ko??

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

18 tháng 10 2017

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=1.21+4^3.21+...+4^57.21

A=(1+4^3+...+4^57).21

Vậy A chia hết cho 21

6 tháng 11 2024

C= 4(1+4+4^2+4^3+4^4+...+4^59) 

C= 4+4^2+4^3+4^4+...+4^59

C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2) 

C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16) 

C=4.21 + 4^3.21+4^57.21

Suy ra C chia hết cho 21