Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ , ,
cùng phương với => ∆1 //∆3 ( hoặc ∆1 = ∆3 ) (1)
cùng phương với => ∆2 // ∆3 ( hoặc ∆2 = ∆3 ) (2)
Từ (1), (2) suy ra ∆1 // ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ , cùng phương.
Vậy câu a) đúng.
b) Câu này cũng đúng.
a) Giả sử \(m\overrightarrow{a}=m\overrightarrow{b}\)
\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow m.\overrightarrow{0}=\overrightarrow{0}\) (do \(\overrightarrow{a}=\overrightarrow{b}\) )
\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\) (luôn đúng).
Vậy điều giả sử đúng.
Ta chứng minh được:
Nếu \(\overrightarrow{a}=\overrightarrow{b}\) thì \(m\overrightarrow{a}=m\overrightarrow{b}\).
b) Có: \(m\overrightarrow{a}=m\overrightarrow{b}\)\(\Leftrightarrow m\overrightarrow{a}-m\overrightarrow{b}=\overrightarrow{0}\)
\(\Leftrightarrow m\left(\overrightarrow{a}-\overrightarrow{b}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{0}\) (do \(m\ne0\) )
\(\Leftrightarrow\overrightarrow{a}=\overrightarrow{b}\) (đpcm).
c) Có \(m\overrightarrow{a}=n\overrightarrow{a}\Leftrightarrow m\overrightarrow{a}-n\overrightarrow{a}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{a}\left(m-n\right)=\overrightarrow{0}\)
\(\Leftrightarrow m-n=0\) ( do \(\overrightarrow{a}\ne0\) )
\(\Leftrightarrow m=n\) (đpcm).
ta có \(\overrightarrow{x}\) sẽ cùng phương với véctơ đối của nó là \(\overrightarrow{y}=-\left(-2\overrightarrow{a}+\overrightarrow{b}\right)=2\overrightarrow{a}-\overrightarrow{b}\)
\(\Rightarrow A\)
a) Theo giả thiết \(\overrightarrow{a}=\overrightarrow{b}\ne\overrightarrow{0}\) nên giả sử \(\overrightarrow{a}=m\overrightarrow{b}\) suy ra:
\(\overrightarrow{a}=m\overrightarrow{a}\Leftrightarrow\left(1-m\right)\overrightarrow{a}=\overrightarrow{0}\).
\(\Leftrightarrow1-m=0\) (vì \(\overrightarrow{a}\ne\overrightarrow{0}\) ).
\(\Leftrightarrow m=1\).
b) Nếu \(\overrightarrow{a}=-\overrightarrow{b};\overrightarrow{a}\ne\overrightarrow{0}\).
Giả sử \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\overrightarrow{a}=-m\overrightarrow{a}\)\(\Leftrightarrow\overrightarrow{a}\left(1+m\right)=\overrightarrow{0}\)
\(\Leftrightarrow1+m=0\)\(\Leftrightarrow m=-1\).
c) Do \(\overrightarrow{a}\) , \(\overrightarrow{b}\) cùng hướng nên: \(m>0\).
Mặt khác: \(\overrightarrow{a}=m\overrightarrow{b}\Leftrightarrow\left|\overrightarrow{a}\right|=\left|m\right|.\left|\overrightarrow{b}\right|\)
\(\Leftrightarrow20=5.\left|m\right|\)\(\Leftrightarrow\left|m\right|=4\)
\(\Leftrightarrow m=\pm4\).
Do m > 0 nên m = 4.
d) Do \(\overrightarrow{a},\overrightarrow{b}\) ngược hướng nên m < 0.
\(\left|\overrightarrow{a}\right|=\left|m\right|.\left|\overrightarrow{b}\right|\)\(\Leftrightarrow15=\left|m\right|.3\)\(\Leftrightarrow\left|m\right|=5\)\(\Leftrightarrow m=\pm5\).
Do m < 0 nên m = -5.
e) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}\ne\overrightarrow{0}\) nên\(\overrightarrow{0}=m.\overrightarrow{b}\). Suy ra m = 0.
g) \(\overrightarrow{a}\ne\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\) nên \(\overrightarrow{a}=m.\overrightarrow{0}=\overrightarrow{0}\). Suy ra không tồn tại giá trị m thỏa mãn.
h) \(\overrightarrow{a}=\overrightarrow{0};\overrightarrow{b}=\overrightarrow{0}\) nên \(\overrightarrow{0}=m.\overrightarrow{0}\). Suy ra mọi \(m\in R\) đều thỏa mãn.
Dấu "=" xảy ra khi \(\overrightarrow{a}\) và \(\overrightarrow{b}\) cùng hướng