Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Xét (O) có
MA,MB là các tiếp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
Ta có: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI là đường cao
Xét tứ giác MHIK có góc MHK=góc MIK=90 độ
nen MHIK là tứ giác nội tiếp
b: Xét ΔMEA và ΔMAI có
góc MEA=góc MAI
góc EMA chung
Do đó: ΔMEA đồng dạng với ΔMAI
=>ME/MA=MA/MI
=>MA^2=MI*ME
Đường tròn c: Đường tròn qua D_1 với tâm O Đoạn thẳng f: Đoạn thẳng [C, D] Đoạn thẳng h: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [M, A] Đoạn thẳng l: Đoạn thẳng [M, B] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O, B] Đoạn thẳng r: Đoạn thẳng [M, O] Đoạn thẳng s: Đoạn thẳng [A, B] Đoạn thẳng t: Đoạn thẳng [H, C] Đoạn thẳng a: Đoạn thẳng [D, H] O = (1.6, 4.42) O = (1.6, 4.42) O = (1.6, 4.42) Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s
a. Do I là trung điểm CD nên \(OI⊥CD\Rightarrow\widehat{OIM}=90^o.\)
Ta thấy \(\widehat{OAM}=\widehat{OBM}=\widehat{OIM}=90^o\) nên A, B ,M , O, I cùng thuộc đường tròn đường kính MO.
b. Xét đường tròn (O) có \(\widehat{AEB}=\frac{\widehat{AOB}}{2}\) (1)
Xét đường tròn đường kính MO có MA = MB nên \(sđ\widebat{AM}=sđ\widebat{MB}\).
Nên \(\widehat{AOB}=\frac{sđ\widebat{AMB}}{2}=sđ\widebat{AM}=sđ\widebat{MB}\)
Lại có \(\widehat{MIB}=\frac{sđ\widebat{MB}}{2}=\frac{\widehat{AOB}}{2}\), vậy nên \(\widehat{MIB}=\widehat{AEI.}\)
Lại có \(\widehat{MIB}=\widehat{EID}\) (đối đỉnh) nên \(\widehat{AEI}=\widehat{EID}\)
Chúng ở vị trí so le trong nên AE // CD.
c. Nếu \(MA⊥MB\)thì tứ giác OAMB là hình chữ nhật, lại có OA = OB nên nó là hình vuông. Khi đó \(OM=\sqrt{2OB^2}=R\sqrt{2}\)
Vậy để \(MA⊥MB\) thì M thuộc tia đối tia CD mà \(OM=R\sqrt{2}\)
d. Ta thấy ngay \(\Delta MBD\sim\Delta MCB\left(g-g\right)\Rightarrow\frac{MB}{MC}=\frac{MD}{MB}\Rightarrow MB^2=MC.MD\)
Xét tam giác vuông MBO có BH là đường cao nên \(MB^2=MH.MO\)
Vậy thì \(MH.MO=MC.MD\Rightarrow\frac{MH}{MD}=\frac{MC}{MO}\)
Suy ra \(\Delta MCH\sim\Delta MDO\left(c-g-c\right)\)
Vậy thì \(\widehat{MHC}=\widehat{MDO}\left(1\right)\) hay tứ giác HCDO nội tiếp. Vậy \(\widehat{OCD}=\widehat{OHD}\) (2) (Cùng chắn cung OD)
Lại có \(\widehat{MDO}=\widehat{OCD}\) (OC = OD = R) nên \(\widehat{MHC}=\widehat{OHD}\)
Vậy thì \(\widehat{CHB}=\widehat{DHB}\) (Cùng phụ với góc MHC và OHD)
Tóm lại HB là phân giác góc CHD(đpcm).
a, HS tự chứng minh
b, OM = R 2
c, MC. MD = M A 2 = MH.MO
=> MC. MD = MH.MO
=> DMHC ~ DMDO (c.g.c)
=> M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp
Chứng minh được: M H C ^ = O H D ^
=> C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)
a: Xét (O) có
AM là tiếp tuyến
BM là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM\(\perp\)AB
Xét tứ giác MHIK có \(\widehat{MHK}=\widehat{MIK}=90^0\)
nên MHIK là tứ giác nội tiếp
b: Xét ΔMAE và ΔMIA có
góc MAE=góc MIA
góc AME chung
Do đó: ΔMAE\(\sim\)ΔMIA
Suy ra: MA/MI=ME/MA
hay \(MA^2=ME\cdot MI\)