K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

a) Vì đường tròn (O) và (O') tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng.

Ta có: MB = MC (M là TĐ của BC)

Xét (O) ta có: DE vg góc BC (gt)

mà M là TĐ của BC

Suy ra : M là TĐ của DE ( đường kính vuông góc với dây cung)

Xét TG  BDCE có  2 đường chéo DE và BC cắt nhau tại trung điểm M của mỗi đường

Suy ra: BDCE là hình bình hành.

 

16 tháng 1 2021

(Bổ sung)

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi 

5 tháng 4 2021

ko chắc đúng

5 tháng 4 2021

Không cần phải đúng đâuu

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm