Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì đường tròn (O) và (O') tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng.
Ta có: MB = MC (M là TĐ của BC)
Xét (O) ta có: DE vg góc BC (gt)
mà M là TĐ của BC
Suy ra : M là TĐ của DE ( đường kính vuông góc với dây cung)
Xét TG BDCE có 2 đường chéo DE và BC cắt nhau tại trung điểm M của mỗi đường
Suy ra: BDCE là hình bình hành.
(Bổ sung)
Lại có: BC ⊥ DE
Suy ra tứ giác BDCE là hình thoi
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm