Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B E C D F F'
a/ Vì E là giao điểm của 2 tiếp tuyến của đường tròn (O;r) nên EF = EF' (1)
Dễ dàng chứng minh được \(\Delta OAF=\Delta OF'C\left(\text{2 cạnh góc vuông}\right)\)
=> AF = CF' (2)
Cộng (1) và (2) theo vế được ĐPCM
b/ Từ AF = 2CF' suy ra được AB = CD
ta chứng minh được AE = EC
kết hợp hai điều trên suy ra được tam giác ABD là tam giác cân có
OE là tia phân giác (E là giao điểm hai tiếp tuyến cắt nhau)
Suy ra đpcm
c/ Ta có AB = BE , AF = FB
=> \(OE=\sqrt{OF^2+EF^2}=\sqrt{r^2+\left(3AF\right)^2}=\sqrt{r^2+9.\left(R^2-r^2\right)}\)
\(\sqrt{9R^2-8r^2}\) không đổi. Mà O cố định nên E thuộc \(\left(O;\sqrt{9R^2-8r^2}\right)\)
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên:
O ’ P 2 = O ’ A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π . r 2 = 2 π ( c m 2 ) .
(O; R) và (O’; R’) tiếp xúc ngoài với nhau
⇒ OO’ = R + r.
O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB
⇒ ΔPAO’ ΔPBO
⇒ OB = 2.O'A hay R = 2.r
và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r
ΔO’AP vuông tại A nên: O ' P 2 = O ' A 2 + A P 2
⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2
Diện tích hình tròn (O’; r) là: S = π · r 2 = 2 π cm 2