K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Giúp mình với

 

2 tháng 2 2021

Bn giúp mik câu dưới đc ko

19 tháng 12 2016

Cho cái hình đi bb

19 tháng 12 2016

chứng minh OA vuông góc với BC

Ta có AB=AC ( t/c 2 tiếp tuyến cắt nhau tại A)

=> A thuộc đường trung trực BC

OB=OC ( =bk)

=> O thuộc đường trung trực BC

=> OA là cả đường trung trực BC

=> OA vuông góc với BC

Bạn cho t cái hình ik

 

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
24 tháng 11 2017

OABCDHEMNFK

a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.

\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)

Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.

Vậy \(OH\perp BC\)

b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:   \(OH.OA=OC^2=R^2\)

Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có: 

\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)

c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.

Vậy thì \(MN\perp BA\)

Lại có \(BD\perp BA\) nên BD // MN.

d) Ta chứng minh \(OF\perp AD\)

Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)

\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\)  (1)

Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)

Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)

\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)

Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)

Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)

\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)

\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)

\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)

Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.

Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)

\(\Rightarrow BE^2=\frac{20R^2}{9}\)

Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:

\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)

\(\Rightarrow DE=\frac{4R}{3}\)

\(\Rightarrow KE=\frac{2R}{3}\)

24 tháng 11 2017

Cảm ơn ạ 

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC và AO là phân giác của góc BAC

mà OB=OC

nên OA là trung trực của BC 

Xét ΔOBA vuông tại B có cos BOK=OB/OA=1/2

nên góc BOK=60 độ

mà OB=OK

nên ΔOKB đều

b: \(AB=AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

góc DOC=180-120=60 độ

=>góc EOC=30 độ

Xét ΔEOC vuông tại C có tan EOC=EC/CO

=>EC/R=tan 30

=>EC=căn 3/3*R

=>\(AE=R\sqrt{3}+R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{4}{3}R\cdot\sqrt{3}\)