K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

9 tháng 1

M A B O C H D

a/

Xét tg vuông AMO có

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)

Xét tg vuông AMO và tg vuông BMO có

MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)

Xét tg MAB có

tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M

\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)

Ta có

\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)

\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)

\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều

b/ Gọi H là giao của MO với AB

\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)

Ta có

\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)

\(\Rightarrow S_{AOC}=S_{BOC}\)

\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\) 

Xét tg vuông AMO có

\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

Ta có

\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)

\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)

c/

Ta có

\(MA\perp OA;OD\perp OA\) => MA//OD

 \(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)

Xét tg vuông BMO có

\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)

\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)

Xét tg BOD và tg COD có

\(OB=OC=R\)

OD chung

\(\widehat{BOD}=\widehat{MOD}\) (cmt)

=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)

=> CD là tiếp tuyến với (O)

 

 

17 tháng 12 2020

Hình vẽ:

a, \(AH\perp MC\Rightarrow AH=HD\)

Ta có \(\left\{{}\begin{matrix}OA=OD\\HA=HD\end{matrix}\right.\Rightarrow OM\) là trung trực của \(AD\)

\(\Rightarrow MA=MD\Rightarrow\Delta OAM=\Delta ODM\left(c-c-c\right)\)

\(\Rightarrow MD\perp OD\)

Hay MD là tiếp tuyến

b, \(\Delta OAM\) vuông tại A

\(\Rightarrow O;A;M\) thuộc đường tròn đường kính OM

Lại có \(\Delta ODM\) vuông tại D

\(\Rightarrow O;D;M\) thuộc đường tròn đường kính OM

Dễ chứng minh được B là trung điểm OM

\(\Rightarrow M;A;O;D\in\left(B;R\right)\)

c, Vì \(\widehat{BAC}=90^o\Rightarrow\Delta BAC\) vuông tại A

\(\Rightarrow HB.HC=HA^2\)

Mà \(\Delta OAM\) vuông tại A \(\Rightarrow HM.HO=HA^2\)

\(\Rightarrow HB.HC=HM.HO\)

2 tháng 1 2019

bn hãy trả lời thật zui zẻ nghen

2 tháng 1 2019

what?