K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

a) Xét tam giác AOD và tam giác BAD có:

{Dˆ:chungAOˆD=DAˆB=90{D^:chungAO^D=DA^B=90⇒ΔAOD≀ΔBAD(g.g)⇒ΔAOD≀ΔBAD(g.g)

b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)DA^O=AB^D=AB^O(ΔAOD≀ΔBAD)

Và AOˆD=AOˆB=90AO^D=AO^B=90 (2 đường chéo vuông góc tại O)

Do đó ΔAOD≀ΔBOA(g.g)ΔAOD≀ΔBOA(g.g)

⇒ADAB=ODAO⇒ADAB=ODAO (1)

Lại có: {DAˆO:chungAOˆD=ADˆC=90{DA^O:chungAO^D=AD^C=90⇒ΔADC≀ΔAOD(g.g)⇒ΔADC≀ΔAOD(g.g)

⇒CDOD=ADAO⇔CDAD=ODAO⇒CDOD=ADAO⇔CDAD=ODAO (2)

Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD⇒ADAB=CDAD⇒AD2=AB⋅CD

c) Ta có: AB song song với DC (ABCD là hình thang)

⇒ABˆO=ODˆC(slt)⇒AB^O=OD^C(slt)

Và AOˆB=DOˆC(đ2)AO^B=DO^C(đ2)

Do đó ΔOCD≀ΔOAB(g.g)ΔOCD≀ΔOAB(g.g)

⇒k=OCOA=CDAB=94⇒k=OCOA=CDAB=94

⇒SΔOCDSΔOAB=k2=942=8116⇒SΔOCDSΔOAB=k2=942=8116

Vậy........................

Δ : tam giác. Chúc bạn học tốt nhé!

2 tháng 5 2021

a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.

Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK 

=> tứ giác ABHK nội tiếp

b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB 

LẠi có góc AOB là góc ở tâm chắn cung AB 

=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ

=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2

c,

 

 

2 tháng 5 2021

c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD

Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)

Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)

=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE

 

4 tháng 3 2021

undefined

`a,`  Ta có: `AO=OB(=R)`

Và: `AB=R` (giả thiết).

`=>AO=AB=BO`

Xét \(\Delta ABO\) có:

`AO=OB=AB(cmt)`

`=>` \(\Delta ABO\) là tam giác đều.

`b,` Ta có: \(\Delta ABO\) là tam giác đều nên:

`=>` \(\widehat{AOB}=60^0\)

Lại có: \(\widehat{AOB}=\dfrac{1}{2}sđ\stackrel\frown{AnB}\) (góc nội tiếp).

\(\Rightarrow sđ\stackrel\frown{AnB}=2\widehat{AOB}=2\cdot60^0=120^0\)

\(\Rightarrow sđ\stackrel\frown{AmB}=360^0-sđ\stackrel\frown{AnB}=360^0-120^0=240^0\)

`c,` Ta có: \(\widehat{AOB}+\widehat{BOC}=180^0\) (kề bù).

\(\Rightarrow\widehat{BOC}=180^0-\widehat{AOB}=180^0-60^0=120^0\)

Mặt khác: \(sđ\stackrel\frown{BnC}=\widehat{BOC}=120^0\) (góc ở tâm).

\(\Rightarrow sđ\stackrel\frown{CAB}=360^0-sđ\stackrel\frown{BnC}=360^0-120^0=240^0\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:

Từ $O$ hạ $OH\perp AB$ thì $H$ là trung điểm của $AB$

Tam giác $OAB$ cân tại $O$ nên đường cao, đường trung tuyến $OH$ đồng thời là đường phân giác.

$\Rightarrow \widehat{AOH}=60^0$

$\sin \widehat{AOH}=\frac{AH}{AO}=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=AO.\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=\sqrt{3}R$ (độ dài dây $AB$)

Diện tích tam giác $AOB$ là:

$\frac{1}{2}.OA.OB.\sin \widehat{AOB}=\frac{1}{2}R^2.\sin 120^0=\frac{\sqrt{3}}{4}R^2$

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Hình vẽ:

undefined