K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 5 2021

a) \(\widehat{AMO}=\widehat{AIO}=90^o\) nên \(M\)và \(I\)cùng nhìn \(AO\)dưới góc \(90^o\)nên \(AMOI\)nội tiếp. 

b) \(OM=ON\)nên \(O\)thuộc đường trung trực của \(MN\)

\(AM=AN\)nên \(A\)thuộc đường trung trực của \(MN\)

nên \(AO\)là trung trực của \(MN\)nên \(AO\perp MN\).

Tam giác \(AMO\)vuông tại \(M\)đường cao \(MK\)nên

\(AM^2=AK.AO\).

a: ΔOBC cân tại O 

mà OI là trung tuyến

nên OI vuông góc BC

góc OIA=góc OMA=90 độ

=>OIMA nội tiếp

b: Xét (O) có

AM,AN là tiếp tuyến

=>AM=AN

mà OM=ON

nên OA là trung trực của MN

=>OA vuông góc MN tại H

Xét ΔAHK vuông tại H và ΔAIO vuông tại I có

góc HAK chung

=>ΔAHK đồng dạng với ΔAIO

=>AH/AI=AK/AO

=>AH*AO=AK*AI

ΔOMA vuông tại M có MH là đường cao

nên AM^2=AH*AO

=>AM^2=AK*AI

30 tháng 5 2021

Tạm câu c) làm sau :<

a: Xét ΔAMB và ΔACM có 

\(\widehat{AMB}=\widehat{ACM}\)

\(\widehat{MAB}\) chung

Do đó: ΔAMB∼ΔACM

Suy ra: AM/AC=AB/AM

hay \(AM^2=AB\cdot AC\)

b: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp(1)

Xét tứ giác AHON có 

\(\widehat{AHO}+\widehat{ANO}=180^0\)

Do đó:AHON là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn

hay AMHN là tứ giác nội tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
2 tháng 3 2019

bn làm đc câu nào rồi

4 tháng 3 2019

làm được xong ý c rồi còn ý d nữa bn làm dc ko giúp mik vs