K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

ta có góc MBO =90

góc MCO=90

MBO+MCO=90+90=180

Vậy tứ giác MBOC nội tiếp

Xét \(\Delta\)MBK và \(\Delta\) MNB

M chung

MBK=BNK(cùng chắn cung BK)

do đó\(\Delta\) MBK\(\sim\) \(\Delta\)MNB

\(\frac{MB}{MN}\)=\(\frac{MK}{MB}\) ⇒MB2=MN.MK

12 tháng 5 2019

thôi mình giải xong r cảm ơn các bạn

26 tháng 4 2021

.

 

25 tháng 5

Câu b ý 2 làm sao thế

24 tháng 4 2020

Hùng NguyễnPhạm Lan HươngNguyễn Lê Phước ThịnhMai.T.LoanHồng PhúcAkai Haruma

25 tháng 5

Cho mình hỏi câu B ý 2 làm sao thế

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
2 tháng 3

ko thấy ai trả lời, chắc ko ai biết làm bài này

Tr oii câu này ra lâu lắm rồi mà chả có ai trả lời. Chắc bây giờ bn í tầm 17 tuổi r ^_^

5 tháng 5 2017

c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)

F là giao điểm của DK với (O)\(\left(F\ne D\right)\)

Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)

\(\Rightarrow\)Tứ giác OCAK nội tiếp.

\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)

Mà \(\widehat{COK}+\widehat{COF}=180^0\)

\(\Rightarrow\widehat{CAK}=\widehat{COF}\)

\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))

Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)

Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)

\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)

\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)

\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)

\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)

\(\Rightarrow\Delta CAQ\)cân tại A.

Lại có: AC=AB (Tính chất tiếp tuyến)

AB=AP(\(\Delta ABP\) cân tại A)

\(\Rightarrow AP=AC=AB=AQ\)

\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)

\(\Rightarrow\Delta CPQ\)vuông tại C.

=>F,C,P thẳng hàng.

=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))

=> F là trực tâm của \(\Delta DPQ\)

=> F trùng với H.

Mà F thuộc (O)

=> H thuộc (O)

6 tháng 5 2017

Trực tâm H chứ bạn?

8 tháng 5 2020

ajnomoto