Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau:
a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)
Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)
\(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau
➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA
b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\); \(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên
\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD
▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)
\(\widehat{A}\) là góc chung
⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)
Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)
\(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O)
\(=9R^2-R^2\\=8R^2 \)
Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). ➤\(AD\cdot AE=8R^2\left(=AB^2\right)\)