K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Vẽ hình ra nhé Nguyễn Thu Hà

14 tháng 2 2017

Tự vẽ hình:

a) ta có: Nx là tiếp tuyến => \(\widehat{PNO}=90\)

d\(⊥\)AB=> \(\widehat{OMP}=90\)

=> tứ giác OMNP nội tiếp

b) Ta có: CO II MP ( cùng vuông góc với AB)

Tứ giác OMNP nội tiếp => \(\widehat{OPM}=\widehat{ONM}\) (1)

 Tam giác cân OCN ( OC=ON=R) có: \(\widehat{OCN}=\widehat{ONM}\) (2)

Từ (1), (2) => \(\widehat{OPM}=\widehat{OCM}\)(**)

Từ (*), (**) => OCMP là hình bình hành

c) Xét \(\Delta OCN\)là tam giác cân

và \(\Delta MCD\)là tam giác cân ( do C,D đối xứng nhau qua AB) có chung góc C

=> \(\Delta OCN\)đồng dạng \(\Delta MCD\)

=>\(\frac{CN}{CD}=\frac{OC}{CM}\Rightarrow CN.CM=OC.CD=2R^2=const\)

Vậy CN.CM không đổi (ĐPCM)