K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a: Xét (O) có

DB là tiếp tuyến

DC là tiếp tuyến

Do đó: DB=DC

hay D nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD⊥BC(3)

Xét (O) có 

ΔACB nội tiếp đường tròn

AB là đường kính

Do đó: ΔACB vuông tại C

hay AC⊥CB(4)

Từ (3) và (4) suy ra AC//OD

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm

10 tháng 12 2020

Kẻ OC và OD

a)Ta có: AC và CM là tiếp tuyến của đường tròn (O), cắt nhau tại C

=>CM=AC (1)  , OC là phân giác của ∠AOM ⇔ ∠AOC= ∠MOC

Lại có:  BD và MD là 2 tiếp tuyến của đường tròn (O), cắt nhau tại D

=> BD=MD(2)  , OD là tia phân giác của ∠BOM ⇔ ∠BOD =∠MOD

Vì ∠AOC+∠COM+∠MOD+∠DOB=∠AOB=180O

Mà ∠AOC=∠COM, ∠MOD=∠DOB

Nên ∠AOC+∠COM+∠MOD+∠DOB=180o

   ⇔ 2∠COM+ 2∠MOD=180o

   ⇔  2(∠COM+ ∠MOD)=180o

   ⇔ ∠COM+ ∠MOD=\(\dfrac{180^0}{2}\)=90o

Vì ∠COD=∠COM+ ∠MOD mà ∠COM+ ∠MOD=90o nên ∠COD=90o =>△COD là tam giác vuông(3)

Từ (1),(2) (3), suy ra:

Trong △COD,có:   CD=CM+MD =AC+BD

Vậy CD=AC+BD (đpcm)

 

b) Lấy I là trung điểm của CD (I ∈ CD) và kẻ OI

Ta có: △COD là tam giác vuông

 Và OI ứng với cạnh huyền CD=> IO=\(\dfrac{CD}{2}\)

=> IO=CI=ID (1) 

Vì AC⊥AB⊥BD nên AC song song với BD

=> ACDB là hình thang vuông(1)

Lại có: I là trung điểm của CD và O là trung điểm của AB

=>OI là đường trung bình của hình thang ACDB(2)

Từ (1) và (2),  suy ra: IO ⊥AB

=> AB là tiếp tuyến của đường tòn đường kính CD (đpcm)

 

 

10 tháng 12 2020

O A B M D C I