Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt)
=> AN vuông góc EM tại M
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt)
=> AE vuông góc CN tại C
Xét tam giác ANE có : NC và EM là các đường cao
=> B là trực tâm tam giác ANE
=> AB vuông góc NE (t/c trực tâm tam giác)
b) Ta có M là trung điểm AN (t/c đối xứng)
và M cũng là trung điểm EF (t/c đói xứng)
Do đó tứ giác AENF là hính bình hành
=> FA song song NE
Mà NE vuông góc AB (cmt)
=> FA vuông góc AB tại A thuộc (O)
Vậy FA là tiếp tuyến của đt (O)
c)Ta có M là trung điểm AN (t/c đối xứng)
AN vuông góc BF tại M (góc AMB =90 độ)
=> BF là đường trung trực của AN
Xét tam giác AFB và tam giác NFB có
1/ BF cạnh chung
2/ FA = FN (t/c đ trung trực)
3/ BA = BN (t/c đ trung trực)
=> tam giác AFB = tam giác NFB
=> góc FAB = góc FNB
Mà FAB = 90 độ (cmt)
=> góc FNB bằng 90 độ
=> FN vuông góc với BN tại N thuộc (B;BN)
Mà BN = AB
=> FN là tiếp tuyến cửa đt (B;AB)
???ng tr�n c: ???ng tr�n qua B_1 v?i t�m O ???ng th?ng l: ???ng th?ng qua B, I ???ng th?ng l: ???ng th?ng qua B, I ???ng th?ng m: ???ng th?ng qua A, I ???ng th?ng m: ???ng th?ng qua A, I ?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng g: ?o?n th?ng [A, C] ?o?n th?ng h: ?o?n th?ng [A, B] ?o?n th?ng k: ?o?n th?ng [C, D] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [M, C] ?o?n th?ng s: ?o?n th?ng [H, J] ?o?n th?ng t: ?o?n th?ng [J, A] ?o?n th?ng a: ?o?n th?ng [J, M] ?o?n th?ng b: ?o?n th?ng [C, J] O = (2.98, -0.72) O = (2.98, -0.72) O = (2.98, -0.72) ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m B: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m C: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m D: Giao ?i?m c?a c, i ?i?m D: Giao ?i?m c?a c, i ?i?m D: Giao ?i?m c?a c, i ?i?m I: Giao ?i?m c?a d, k ?i?m I: Giao ?i?m c?a d, k ?i?m I: Giao ?i?m c?a d, k ?i?m K: Giao ?i?m c?a c, l ?i?m K: Giao ?i?m c?a c, l ?i?m K: Giao ?i?m c?a c, l ?i?m M: Giao ?i?m c?a e, n ?i?m M: Giao ?i?m c?a e, n ?i?m M: Giao ?i?m c?a e, n ?i?m H: Giao ?i?m c?a c, m ?i?m H: Giao ?i?m c?a c, m ?i?m H: Giao ?i?m c?a c, m ?i?m J: Giao ?i?m c?a c, r ?i?m J: Giao ?i?m c?a c, r ?i?m J: Giao ?i?m c?a c, r
Cô hướng dẫn nhé. Bài này ta sử dụng tính chất góc có đỉnh nằm trong, trên và ngoài đường tròn.
a. Do \(\widehat{DBC}=\widehat{DIB}\Rightarrow\) cung DB = cung DB + cung KC.
Lại có do CD là phân giác nên \(\widehat{BCD}=\widehat{ACD}\) hay cung BD = cung DA. Vậy thì cung AK = cung KC hay AK = KC.
Vậy tam giác AKC cân tại K.
b. Xét tam giác ABC có CI và BI đều là các đường phân giác nên AI cũng là phân giác. Vậy AI luôn đi qua điểm chính giữa cung BC. Ta gọi là H.
AI lớn nhất khi \(AI\perp BC.\)
c. Gọi J là giao ddierm của HO với (O). Khi đó J cố định.
Ta thấy ngay \(\widehat{IAH}=90^o\)
Lại có AI là phân giác góc BAC nên Ạ là phân giác góc MAC. Lại do MAC cân tại A nên MJ = JC.
Vậy M luôn thuộc đường tròn tâm J, bán kinh JC (cố định).
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa