Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đầu bài vô lí qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
1: Ta có: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF

Lời giải
Gọi tọa độ và thiết lập hệ trục:
Để chứng minh nhanh và chặt chẽ, đặt hệ trục sao cho \(A C\) trùng trục hoành.
Gọi \(A \left(\right. 0 , 0 \left.\right)\), \(C \left(\right. c , 0 \left.\right)\) với \(c \neq 0\). Gọi \(B \left(\right. b_{x} , b_{y} \left.\right)\) với \(b_{y} \neq 0\).
Từ giả thiết:
- Đường qua \(A\) vuông góc với \(A C\) là trục tung nên đường \(a\) có phương trình \(x = 0\).
- Đường qua \(B\) song song với \(A C\) là đường ngang \(y = b_{y}\).
Do đó \(M\), giao của hai đường này, có toạ độ \(M \left(\right. 0 , b_{y} \left.\right)\).
Trung điểm \(I\) của \(A B\) có toạ độ
\(I \left(\right. \frac{b_{x}}{2} , \frac{b_{y}}{2} \left.\right) .\)
Phương trình đường \(M I\). Hệ số góc
\(m_{M I} = \frac{\frac{b_{y}}{2} - b_{y}}{\frac{b_{x}}{2} - 0} = \frac{- \frac{b_{y}}{2}}{\frac{b_{x}}{2}} = - \frac{b_{y}}{b_{x}} .\)
Do đó phương trình \(M I\) là
\(y = b_{y} - \frac{b_{y}}{b_{x}} x .\)
Giao \(N\) của \(M I\) với \(A C\) (với \(A C : \textrm{ }\textrm{ } y = 0\)) thỏa
\(0 = b_{y} - \frac{b_{y}}{b_{x}} x \Rightarrow x = b_{x} .\)
Vậy \(N \left(\right. b_{x} , 0 \left.\right)\).
Đường \(B N\) là đường thẳng đi qua \(B \left(\right. b_{x} , b_{y} \left.\right)\) và \(N \left(\right. b_{x} , 0 \left.\right)\), tức phương trình \(x = b_{x}\) (đường thẳng đứng).
Đường cao \(A H\) đi qua \(A \left(\right. 0 , 0 \left.\right)\) và vuông góc với \(B C\). Hệ số góc của \(B C\) là
\(m_{B C} = \frac{b_{y} - 0}{b_{x} - c} = \frac{b_{y}}{b_{x} - c} ,\)
vậy hệ số góc của \(A H\) là \(- \frac{1}{m_{B C}} = - \frac{b_{x} - c}{b_{y}}\). Do \(A H\) đi qua \(A \left(\right. 0 , 0 \left.\right)\), phương trình là
\(y = - \frac{b_{x} - c}{b_{y}} \textrm{ } x .\)
Giao \(O\) của \(B N\) ( \(x = b_{x}\) ) với \(A H\) có toạ độ
\(O \left(\right. b_{x} , \textrm{ }\textrm{ } y_{O} \left.\right) , y_{O} = - \frac{b_{x} - c}{b_{y}} \cdot b_{x} = - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} .\)
a) \(A M B N\) là hình gì? (chứng minh)
Ta có \(B M \parallel A C\) (vì đường qua \(B\) đã cho song song \(A C\)), và \(N\) nằm trên \(A C\), nên \(B M \parallel A N\).
Mặt khác \(A M\) vuông góc với \(A C\) (vì đường \(a\) qua \(A\) vuông góc với \(A C\)), nên \(A M \bot A N\). Từ đó \(A M \bot B M\).
Vì một cặp cạnh đối (AN và BM) song song nên \(A M B N\) là hình thang. Do có \(A M \bot A N\) (tức một góc vuông), nên \(A M B N\) là hình thang vuông.
b) Chứng minh \(C O \bot A B\)
Tính vector:
\(\overset{\rightarrow}{C O} = \left(\right. b_{x} - c , \textrm{ }\textrm{ } y_{O} \left.\right) = \left(\right. b_{x} - c , \textrm{ }\textrm{ } - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} \left.\right) , \overset{\rightarrow}{A B} = \left(\right. b_{x} , \textrm{ }\textrm{ } b_{y} \left.\right) .\)
Tích vô hướng của hai vector này là
\(\overset{\rightarrow}{C O} \cdot \overset{\rightarrow}{A B} = \left(\right. b_{x} - c \left.\right) \cdot b_{x} + \left(\right. - \frac{b_{x} \left(\right. b_{x} - c \left.\right)}{b_{y}} \left.\right) \cdot b_{y} = b_{x} \left(\right. b_{x} - c \left.\right) - b_{x} \left(\right. b_{x} - c \left.\right) = 0.\)
Tích vô hướng bằng \(0\) nên \(\overset{\rightarrow}{C O} \bot \overset{\rightarrow}{A B}\). Do đó \(C O \bot A B\).
Kết luận:
a) Tứ giác \(A M B N\) là hình thang vuông.
b) \(C O\) vuông góc với \(A B\).
ask chatjpt
1) Xét (O) có
DC là tiếp tuyến có C là tiếp điểm
DA là tiếp tuyến có A là tiếp điểm
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến có C là tiếp điểm
EB là tiếp tuyến có B là tiếp điểm
Do đó: EC=EB
Ta có: DE=DC+CE(C nằm giữa D và E)
nên DE=DA+EB(đpcm)
Hokk tôt