Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAO có
CM vừa là đường cao, vừa là trung tuyến
=>ΔCAO cân tại C
=>CA=CO
ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
Xét tứ giác OCAD có
M là trung điểm chung của OA và CD
OC=CA
=>OCAD là hình thoi
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>góc CAB+góc CBA=90 độ
=>góc CBA=90-60=30 độ
Xét ΔBCD có
BM vừa là đường cao, vừa là trung tuyến
=>ΔBCD cân tại B
mà BM là đường cao
nên BM là phân giác của góc CBD
=>góc CBD=2*góc CBM=60 độ
=>ΔCBD đều
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC và AO là phân giác của góc BAC
mà OB=OC
nên OA là trung trực của BC
Xét ΔOBA vuông tại B có cos BOK=OB/OA=1/2
nên góc BOK=60 độ
mà OB=OK
nên ΔOKB đều
b: \(AB=AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc EOC=30 độ
Xét ΔEOC vuông tại C có tan EOC=EC/CO
=>EC/R=tan 30
=>EC=căn 3/3*R
=>\(AE=R\sqrt{3}+R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{4}{3}R\cdot\sqrt{3}\)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
Xét ΔOBA vuông tại B có cos BOA=OB/OA=1/2
nên góc BOA=60 độ
Xét ΔOBK có OK=OB và góc BOK=60 độ
nên ΔOBK đều
b: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc EOC=30 độ
Xét ΔOCE vuông tại C có tan EOC=EC/OC
=>EC/R=tan30
=>\(EC=R\cdot\dfrac{\sqrt{3}}{3}\)
\(AE=AC+CE=R\left(\dfrac{\sqrt{3}}{3}+\sqrt{3}\right)=\dfrac{4\sqrt{3}}{3}\cdot R\)
a: Xét (O) có
AB,AC là tiếp tuýen
nên AB=AC và AO là phân giác của góc BAC
mà OB=OC
nên OA là trug trực của BC
=>OA vuông góc với BC
Xét ΔOBA vuôg tại B có cos BOA=OB/OA=1/2
nên góc BOA=60 độ
=>góc BOK=60 độ
mà OB=OK
nên ΔOKB đều
b: \(AB=AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc COE=60/2=30 độ
Xét ΔOCE vuông tại C có tan EOC=EC/OC
=>EC/R=tan 30
=>\(EC=R\cdot\dfrac{\sqrt{3}}{3}\)
\(AE=R\cdot\dfrac{\sqrt{3}}{3}+R\cdot\dfrac{\sqrt{3}}{2}=\dfrac{5}{6}\sqrt{3}\cdot R\)
a/ Xét tg OAC có
H là trung điểm của AO (đề bài)
CH vuông góc AO (đề bài)
=> CH vừa là đường cao vừa là đường trung trực của tg OAC => tg OAC cân tại C => CA=CO (1)
CO=AO (bán kính (o)) (2)
Từ (1) Và (2) => CA=CO=AO => tg OCA là tg đều
b/
C/m tương tự câu a ta cũng có DO=DA=AO
=> CA=DA => tg ACD là tg cân tại A
Mà AH vuông góc CD (đề bài)
=> AH là đường cao => AH cũng là đường trung trực của tg ACD => CH=CD/2
Xét tg ACB có ^ACB = 90 (góc nt chắn nửa đường tròn)
=> tg ACB là tg vuông tại C
=\(\Rightarrow CH^2=HA.HB=\left(\frac{CD}{2}\right)^2=\frac{CD^2}{4}\Rightarrow CD^2=4.HA.HB\)
a: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O;R)
b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)
\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)
mà \(\widehat{COA}=\widehat{BOA}\)
nên \(\widehat{MOA}=\widehat{MAO}\)
=>ΔMAO cân tại M
a: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
Xét tứ giác OCAD có
I là trung điểm chung của OA và CD
OC=OD
=>OCAD là hình thoi
=>OD=DA
Xét ΔDOA có DO=DA=AO
nên ΔDOA đều
b: OCAD là hình thoi
=>OA là phân giác của góc COD
Xét ΔOCB và ΔODB có
OC=OD
góc COB=góc DOB
OB chung
=>ΔOCB=ΔODB
=>góc ODB=90 độ
=>BD là tiếp tuyến của (O)