K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2015

a/ Ta có: QP vuông góc với AM  tại P (gt) (1)

               AB vuông góc với AM tại A(do Ax là tiếp tuyến của (O) tại A) (2)

Từ (1) và (2)=> QP//AB (3)

Mà: AP=PM=1/2 AM (gt)(4)

Từ (3) và (4)=>QP là đường trung bình trong tam giác ABM

=> QB=QM=1/2 BM (5)

Mà OB=OA (=R) (6)

Từ (5) và (6)=>OQ là đường trung bình trong tam giác ABM

=>OQ//AM (7)

Từ (2) và (7)=>góc BOQ=90 độ (=góc BAM)(8)

Tứ giác BNAC nội tiếp (O)

=> góc BCN=góc BAN (9)

Mà góc BAN+ góc ABN=90 độ (tam giác BOQ vuông do góc QOB=90 độ) (10)

Từ (9) và (10)=> góc BCN+góc ABN=90 độ (11)

Lại có: góc ABN + góc BQO= 90 độ (Tam giác BOQ vuông) (12)

Từ (11) và (12)=> góc BCN=góc BQO 

hay góc BCN=góc OQN (do B, N, Q thẳng hàng) (đpcm)

 

 

 

 

 

a) Xét tứ giác PMON có 

\(\widehat{PMO}\) và \(\widehat{PNO}\) là hai góc đối

\(\widehat{PMO}+\widehat{PNO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: PMON là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)