Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho o là trung điểm của đoạn AB. Trên cùng môtj nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với Ab. TRên tia Ax lấy C( khác A), qua o kẻ đường thawnggr vuông góc với OC cắt By tại D.
a. CM: (AB)^2= 4AC.BD
minh se noi cach tu duy cua minh, mong ban hieu
AB^2=4AC.BD=>(2OA)^2=4AC.BD=>4OA^2=4AC.BD=>Ban phai chung minh OA^2=AC.BD
Day la cach chung minh: goc COA+COD+DOB=180
Ma COD=90(theo gt)=>COA+BOD=90(1)
Trong tam giac COA co CAO=90:COA+ACO=90(2)
Tu (1)va(2) ta=>BOD=ACO
xet tam giac CAO va OBD co:
CAO=OBD=90
BOD=ACO(theo cm tren)
=>tam giac CAO dong dang voi tam giac OBD=>AC/OA=OB/BD=>AC/OA=OA/BD=>OA^2=AC.BD
A B M C D E H
Câu c: \(BM\) cắt \(AC\) tại \(E\). Như vậy thì tam giác \(EMA\) vuông tại \(M\).
\(CA=CM\) nên \(\widehat{EAM}=\widehat{CMA}\).
Mà \(\widehat{EAM}+\widehat{AEB}=90^o=\widehat{CMA}+\widehat{EMC}\) nên \(\widehat{AEM}=\widehat{EMC}\).
Tức là \(CE=CM=CA\) hay \(C\) là trung điểm \(AM\)
Đến đây bạn để ý \(MH\) song song với \(AM\) và dùng định lí Thales là CM được.
Gọi N là giao MH với BC ( N thuộc MH )
Tương tựTrần Quốc Đạt thì C là trung điểm AE
Vì MN // CE nên theo Ta-let
\(\frac{MN}{CE}=\frac{BN}{BC}\)
Vì NH // CA nên theo Talet
\(\frac{BN}{BC}=\frac{NH}{CA}\)
\(\Rightarrow\frac{MN}{CE}=\frac{NH}{CA}\)
Mà CE = CA (trung điểm)
\(\Rightarrow MN=NH\)=> N là trung điểm MH
Nên BC đi qua trung điểm N của MH
P/S : BÀi này ko liên quan tới A,N,D thẳng hàng nhé !