Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Coi \(ABCD\) là mặt đáy.
Trên tia đối của tia $BA$ lấy $T$ sao cho $BT=BA$. Khi đó:
\(\overrightarrow {AB}=\overrightarrow{BT}; \overrightarrow{CT}=\overrightarrow{DB}\)
Ta có:
\(\overrightarrow{OM}=\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})\)
\(\Leftrightarrow 2\overrightarrow{OM}=\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{BT}-\overrightarrow {BC}\)
\(\Leftrightarrow 2\overrightarrow{OM}=\overrightarrow{CT}=\overrightarrow{DB}\Leftrightarrow \overrightarrow{OM}=\frac{1}{2}\overrightarrow{DB}\)
Lấy $K$ là trung điểm của $BB'$
Vì $O$ là tâm hình hộp nên $O$ là trung điểm $B'D$
\(\Rightarrow OK\parallel BD; OK=\frac{1}{2}BD\)
\(\Rightarrow \overrightarrow{OK}=\frac{1}{2}{DB}\)
Do đó \(K\equiv M\) hay M là trung điểm của $BB'$
mình làm cũng hoang mang lắm bạn=), hay để hỏi cô xem sao
4.
Phép tịnh tiến vecto v biến d thành chính nó khi v cùng phương với vecto chỉ phương của d
Ta có \(\left(1;2\right)\) là 1 vtcp của d
Do đó vecto \(\overrightarrow{v}=\left(k;2k\right)\) với k là 1 số thực nào đó
22.
B là ảnh của C qua phép tịnh tiến vecto DA
26.
Không tồn tại phép tịnh tiến biến hình vuông thành chính nó (nếu ko kể phép tịnh tiến theo vecto-không)