K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nộitiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

nên AEHF là hình chữ nhật

Suy ra: AH=EF

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và(2) suy ra \(AE\cdot AB=AF\cdot AC\)

4 tháng 12 2017

A H O B C N M F E I

Hình đây ạ 

23 tháng 4 2017

Vẽ hình ra luôn đi Nam.

12 tháng 12 2017

a)Ta có:

Tam giác ABC nội tiếp đường tròn (O;R)

=> Tam giác ABC vuông tại A (BC là đường kính của đường tròn (O;R))

=> góc EAF =900 (1)

Mà: HE vuông góc với AB => góc AEH = 900 (2)

HF vuông góc với AC => góc AFH = 900 (3)

Từ (1);(2) và (3) suy ra:

Tứ giác AEHF là hình chữ nhật

b)

Ta có : AH vuông góc với BC

Xét tam giác vuông AHB, ta được:

AH2=AE.AB (4)

Xét tam giác vuông AHC , ta được:

AH2=AF.AC (5)

Từ (4) và (5) suy ra:

AE.AB=AF.A

Qua A kẻ đường thẳng vuông góc với EF tại M, cắt BC tại N.Gọi I là giao của AH và EF.

CMR: góc IAE = góc IEA.

Có tam giác MAE vuông tại M => góc MAE + góc MEA= 90 độ   Hay góc NAB + góc IEA = 90 độ

Có tam giác ABH vuông tại H => góc ABH + góc HAE= 90 độ   Hay góc NBA + góc IAE = 90 độ

                                                                                                      => góc NAB= góc NBA (phụ với hai góc bằng nhau)

                                                                                                      => tam giác NAB cân tại N

                                                                                                      => NA=NB

CM: NA=NC

=> NB=NC

=> N là trung điểm của BC

=> N trùng với I, M trùng với K.

mà AM vuông góc với EF

=> AK vuông góc với EF

Xét tam giác AEF vuông tại A có AK là đường cao

=> 1/AK2 = 1/AE2 + 1/AF2

Cm AE=HF, EH=AF

=> đpcm

26 tháng 9 2018

A B C H E F O

a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)

Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)

Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).

b) Biến đổi tương đương:

\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))

\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)

\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)

\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)

\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)

\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)

Vậy có ĐPCM.