Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AB là đường kính, C thuộc đường tròn nên \(\widehat{ACB}=90^o\) hay tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có
\(BC^2=MB.AB=2.6=12\Rightarrow BC=\sqrt{12}\left(cm\right)\)
b) Xét tam giác cân OAC có OE là đường cao nên đồng thời là phân giác.
Từ đó ta có \(\Delta AOE=\Delta COE\left(c-g-c\right)\Rightarrow\widehat{ECO}=\widehat{EAO}=90^o\)
Vậy EC là tiếp tuyến của (O) tại C.
c) Xét tam giác AFK, ta thấy ngay B là trực tâm nên \(AK\perp FD\). Lại có \(AD\perp FD\), vậy A, D, F thẳng hàng.
Ta thấy ngay AH là phân giác góc \(\widehat{FAK}\) mà lại là đường cao, vậy tam giác AH đồng thời là trung trực của FK.
B thuộc AH, vậy BF = BK hay tam giác FBK cân tại B.
d) Ta có tứ giác ACHK nội tiếp nên \(\widehat{HCF}=\widehat{AKF}=\widehat{AFK}\) (Tam giác AFK cân)
Ta cũng có \(\widehat{ACO}=\widehat{OAC}\)(Tam giác AOC cân)
Vậy nên \(\widehat{HCF}+\widehat{OCA}=\widehat{CHF}+\widehat{CAO}=90^o\Rightarrow\widehat{OCH}=90^o\)
Vậy thì \(\widehat{ECH}=\widehat{ECO}+\widehat{OCH}=180^o\) hay H, C, E thẳng hàng.
a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)
b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC
D1=D2(t/c 2 tiếp tuyến cắt nhau)
Xét tam giác DHA=DHC(c.g.c).....nênH1=H2
Mà H1+H2=180....nên H1=H2=90...
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng