Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé nguyen van vu :)
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
viết đề sai rùi bạn
b) chứng minh tứ giác POMQ LÀ hình chữ nhật chứ ko phải chứng minh AQMO LÀ HÌNH CHỮ NHẬT OK
a: Xét (O) co
CM,CA là tiếp tuyên
=>CM=CA
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB
CD=CM+MD
=>CD=CA+BD
b: Xet ΔACN và ΔDBN có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔACN đồng dạng vơi ΔDBN
=>AC/BD=AN/DN
=>CN/MD=AN/ND
=>MN/AC
a/
Ta có M và A cùng nhìn OC dưới 1 góc \(90^o\) => ACMO là tứ giác nội tiếp
b/
Xét tg vuông BED và tg vuông AEC có \(\widehat{BED}\) chung
=> tg BED đồng dạng với tg AEC (g.g.g)
\(\Rightarrow\dfrac{DB}{CA}=\dfrac{DE}{CE}\)
Mà
\(DB=DM;CA=CM\) (Hai tiếp tuyến cùng xp từ 1 điểm...)\(\Rightarrow\dfrac{DB}{CA}=\dfrac{DM}{CM}=\dfrac{DE}{CE}\Rightarrow DM.CE=CM.DE\)
c/
Ta có
\(CA\perp AB\left(gt\right);DB\perp AB\left(gt\right)\) => CA//DB
\(\Rightarrow\dfrac{BN}{CN}=\dfrac{DB}{CA}\) (Talet)
Mà \(\dfrac{DM}{CM}=\dfrac{DB}{CA}\left(cmt\right)\)
\(\Rightarrow\dfrac{BN}{CN}=\dfrac{DM}{CM}\) => MN//BD (Talet đảo trong tam giác)