K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔABC nội tiếp

AB là đường kính

=>ΔABC vuông tại C

=>BC vuông góc AC

Xét ΔKAB vuông tại A có AC là đường cao

nên BC*BK=BA^2=4*R^2

30 tháng 11 2021

2: Xét tứ giác OBCD có 

\(\widehat{OBC}+\widehat{ODC}=180^0\)

Do đó: OBCD là tứ giác nội tiếp

hay O,B,C,D cùng thuộc một đường tròn

25 tháng 12 2021

a: Xét tứ giác AEMO có

\(\widehat{EAO}+\widehat{EMO}=180^0\)

Do đó: AEMO là tứ giác nội tiếp

13 tháng 12 2022

a: Xét tứ giác CAOM có góc CAO+góc CMO=180 độ

nên CAOM là tứ giác nội tiếp

Tâm là trung điểm của OC

b: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

AC+BD=CM+MD=CD

16 tháng 7 2020

A H O B N C M D x y

Ax \(\perp\) AB

By \(\perp\) AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra:  \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)

Suy ra: MN \(\perp\) AB

b. Trong tam giác ACD, ta có: MN // AC

Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét)     (3)

Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)

Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét)     (4)

Trong tam giác BDN, ta có: AC // BD

Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)

\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)

Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN