Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong tứ giác AOBM có = = .
Suy ra cung AMB + =
=> cung AMB= -
= -
=
b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :
Cung AB = - =
a, \(\widehat{CAI}=\widehat{CMI}=90^0\) nên ACMI nt
\(\widehat{AMB}=\widehat{EIF}=90^0\) (góc nt chắn nửa đg tròn) nên MEIF nt
b, Vì ACMI nt nên \(\widehat{MAB}=\widehat{MCI}\)
Vì MEIF nt nên \(\widehat{MEF}=\widehat{MIF}\)
Mà \(\widehat{MCI}=\widehat{MIF}\) (cùng phụ \(\widehat{MIC}\)) nên \(\widehat{MAB}=\widehat{MEF}\)
Mà 2 góc này ở vị trí ĐV nên EF//AB
c, Ta có \(\widehat{MCI}=\widehat{MIF}\)
\(\Rightarrow\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}\)
Mà tg CID vuông tại I nên \(\widehat{MCI}+\widehat{MDI}=\widehat{MIF}+\widehat{MDI}=90^0\)
Do đó tg MID vuông tại M
\(\Rightarrow\widehat{DMI}+\widehat{CMI}=90^0+90^0=180^0\)
Suy ra đpcm
Chờ t câu d
d, Gọi J,K ll là tâm đg tròn ngoại tiếp tg CME và tg MFD
Gọi G là trung điểm MF
\(\Rightarrow\widehat{GKM}=\widehat{MDF}\left(=\dfrac{1}{2}sđ\stackrel\frown{MF}\right)\)
Mà \(\widehat{GKM}+\widehat{KMG}=90^0\) nên \(\widehat{MDF}+\widehat{KMG}=90^0\left(1\right)\)
Vì MIBD nt nên \(\widehat{MBI}=\widehat{MDF}\)
Mà \(\widehat{OMB}=\widehat{OBM}\) nên \(\widehat{OMB}=\widehat{MDF}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{OMB}+\widehat{GKM}=90^0\)
\(\Rightarrow KM\perp OM\) hay OM là tt của đg tròn ngoại tiếp tg MFD
Cmtt \(\Rightarrow JM\perp OM\) hay OM là tt đg tròn ngoại tiếp tg CME
Từ đó suy ra đpcm
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
ΔBAC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{1}{2}\)
nên \(\widehat{BAC}=30^0\)
b: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{AOB}\)
Xét ΔOAD và ΔOBD có
OA=OB
\(\widehat{AOD}=\widehat{BOD}\)
OD chung
Do đó: ΔOAD=ΔOBD
=>\(\widehat{OAD}=\widehat{OBD}=90^0\)
=>DB là tiếp tuyến của (O)
c: ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BCA}=90^0-30^0=60^0\)
Xét ΔOBC có OB=OC và \(\widehat{BCO}=60^0\)
nên ΔOBC đều
=>ΔBOC cân tại B
ΔBOC cân tại B
mà BM là đường cao
nên M là trung điểm của OC
ΔOBE cân tại O
mà OM là đường cao
nên M là trung điểm của BE
Xét tứ giác OBCE có
M là trung điểm chung của OC và BE
nên OBCE là hình bình hành
Hình bình hành OBCE có OB=OE
nên OBCE là hình thoi
a: Xét ΔOAM vuông tại A có cosAOM=OA/OM=1/2
nên góc AOM=60 độ
=>sđ cung ANB=gócAOB=2*60=120 độ
b: góc AOB=180-36=144 độ