Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O I K E M N G
a) Xét đường tròn (O) bán kính AB có điểm E nằm trên cung AB => ^AEB=900 hay ^MEN=900
Tương tự ^CNB=^AMC=900 => ^EMC=^ENC=900.
Xét tứ giác MENC: ^MEN=^EMC=^ENC=900 => Tứ giác MENC là hình chữ nhật.
=> MN=EC (đpcm).
b) Gọi G là tâm của hình chữ nhật MANC => GN=GC.
Xét \(\Delta\)GCK và \(\Delta\)GNK: GC=GN; GK chung; CK=NK => \(\Delta\)GCK=\(\Delta\)GNK (c.c.c)
=> ^GCK=^GNK. Mà ^GCK=900 => GNK=900 => MN vuông góc NK
=> MN là tiếp tuyến của (K) với N là tiếp điểm.
Tương tự ta cũng c/m được MN là tiếp tuyến của (I) với M là tiếp điểm.
=> MN là tiếp tuyến chung của (I) và (K) (đpcm).
c) Dễ thấy \(\Delta\)ACE ~ \(\Delta\)ECB => \(\frac{AC}{CE}=\frac{CE}{CB}\Rightarrow CE^2=AC.CB\)
Thay AC=10 (cm); CB=40 (cm) vào biểu thức trên, ta có:
\(CE^2=10.40=400\Leftrightarrow CE=\sqrt{400}=20\)(cm)
Lại có CE=MN (cmt) => MN =20 (cm).
d) Ta có: \(S_{\frac{1}{2}\left(I\right)}=\frac{\left(\frac{1}{2}AC\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.10\right)^2.3,14}{2}=39,25\)(cm2)
\(S_{\frac{1}{2}\left(K\right)}=\frac{\left(\frac{1}{2}CB\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.40\right)^2.3,14}{2}=628\)(cm2)
\(S_{\frac{1}{2}\left(O\right)}=\frac{\left[\frac{1}{2}\left(AC+CB\right)\right]^2.3,14}{2}=\frac{\left(\frac{1}{2}.50\right)^2.3,14}{2}=981,25\)(cm2)
\(\Rightarrow S_{G.H}=S_{\frac{1}{2}\left(O\right)}-\left(S_{\frac{1}{2}\left(I\right)}+S_{\frac{1}{2}\left(K\right)}\right)=981,25-\left(39,25+628\right)=314\)(cm2)
(Chú thích \(S_{G.H}:\)Diện tích hình được giới hạn bở 3 nửa đường tròn).
ĐS:...
Câu cuối là gì nhờ
A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD
Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90
b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2
Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)
c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM
Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)
Suy ra OHMK là hcn
d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE
Suy ra C là trung điểm AE
e/MF cắt HK thì phải
Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF
f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)
Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)
g/ ghi đề dùm
a: Xét (O) có
CA,CB là các tiếp tuyến
Do đó: CA=CB
=>C nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>OC\(\perp\)AB tại trung điểm E của AB
b: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Ta có: AB\(\perp\)BD
OC\(\perp\)AB
Do đó: BD//OC
c: Gọi giao điểm của DB với AC là K
Ta có: BH\(\perp\)AD
CA\(\perp\)AD
Do đó: BH//CA
Ta có: AB\(\perp\)BD tại B
=>AB\(\perp\)KD tại B
=>ΔABK vuông tại B
Ta có: \(\widehat{BAK}+\widehat{BKA}=90^0\)
\(\widehat{CBA}+\widehat{CBK}=\widehat{ABK}=90^0\)
mà \(\widehat{CBA}=\widehat{CAB}\)
nên \(\widehat{CBK}=\widehat{CKB}\)
=>CK=CB
mà CA=CB
nên CA=CK(3)
Xét ΔDCA có HI//AC
nên \(\dfrac{HI}{AC}=\dfrac{DI}{DC}\left(4\right)\)
Xét ΔDCK có IB//CK
nên \(\dfrac{IB}{CK}=\dfrac{DI}{DC}\left(5\right)\)
Từ (3),(4),(5) suy ra IH=IB
=>BH=2IH
d: Xét tứ giác AOBC có
\(\widehat{OAC}+\widehat{OBC}+\widehat{AOB}+\widehat{ACB}=360^0\)
=>\(\widehat{ACB}+120^0+90^0+90^0=360^0\)
=>\(\widehat{ACB}=60^0\)
Xét ΔBAC có CA=CB và \(\widehat{ACB}=60^0\)
nên ΔBAC đều
Xét (O) có
CA,CB là các tiếp tuyến
Do đó: CO là phân giác của góc ACB
=>\(\widehat{ACO}=\widehat{BCO}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔOAC vuông tại A có \(tanACO=\dfrac{AO}{AC}\)
=>\(\dfrac{R}{AC}=tan30=\dfrac{1}{\sqrt{3}}\)
=>\(AC=R\sqrt{3}\)
Vì ΔACB đều
nên \(S_{ACB}=AC^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{R^2\cdot3\cdot\sqrt{3}}{4}\)