K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

đề sai

30 tháng 9 2019

câu hỏi tương tự

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

2 tháng 9 2016

A B C M D F E

Kí hiệu như trên hình.

Ta có : \(AF^2+MF^2=AE^2+EM^2=AM^2\)

\(BD^2+MD^2=BF^2+MF^2=BM^2\)

\(ME^2+EC^2=MD^2+DC^2=MC^2\)

Cộng các đẳng thức trên theo vế 

\(\left(BD^2+CE^2+AF^2\right)+\left(MF^2+MD^2+ME^2\right)=\left(DC^2+EA^2+FB^2\right)+\left(EM^2+MF^2+MD^2\right)\)

\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)

 

 

2 tháng 9 2016

ta có:BD2+CE2+AF2=MB2-MD2+MC2-ME2+MA2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)

DC2+EA2+FB2=MC2-MD2+MA2-ME2+MB2-MF2=MA2+MB2+MC2-(MD2+ME2+MF2)

→BD2+CE2+AF2=DC2+EA2+FB2

10 tháng 8 2020

Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :

10 tháng 8 2020

đề kiểu gì thế ?

Điểm E; Điểm F; Điểm H đây vậy bạn ơi

16 tháng 7 2017

trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)

                                   AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)

tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)