Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tự vẽ hình nha
bạn dễ dàng chứng minh đc tam giác ACO là tam giác đều ( AM = MO ; CM vuong goc vs AO )
trong tam giác ECO có EA = AO = AC nên suy ra tam giac ECO vuong tai C
suy ra EC vuong goc vs OC . (dpcm )
b, sử dụng định lí pitago
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O) có
OA là một phần đường kính
CD là dây(gt)
OA⊥CD tại H(gt)
Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)
Xét tứ giác OCAD có
H là trung điểm của đường chéo CD(cmt)
H là trung điểm của đường chéo OA(gt)
Do đó: OCAD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành OCAD có OC=OD(=R)
nên OCAD là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: OCAD là hình thoi(cmt)
nên OC=CA=AD=OD(Các cạnh trong hình thoi OCAD)
Ta có: OC=OA(=R)
mà OC=CA(cmt)
nên OC=CA=OA
Xét ΔOCA có OC=CA=OA(cmt)
nên ΔOCA đều(Dấu hiệu nhận biết tam giác đều)
⇒\(\widehat{COA}=60^0\)(Số đo của một góc trong ΔOCA đều)
Ta có: OCAD là hình thoi(cmt)
nên OA là tia phân giác của \(\widehat{COD}\)(Tính chất hình thoi)
\(\Rightarrow\widehat{COD}=2\cdot\widehat{COA}\)
hay \(\widehat{COD}=120^0\)
Vậy: \(\widehat{COD}=120^0\)
Làm luôn phần c :)
c, Vì ACOD là hình thoi (cmb)
\(\Rightarrow\) OC // AD (tính chất hình thoi)
Mà E \(\in\) OC (CE là đường kính của đường tròn tâm O)
\(\Rightarrow\) CE // AD
Xét tứ giác ACED có: CE // AD (cmt)
\(\Rightarrow\) ACED là hình thang (dhnb hình thang)
Ta có: SACD = \(\dfrac{1}{2}\)AH.CD (1)
SDCE = \(\dfrac{1}{2}\)CD.DE (Vì tam giác DCE là tam giác vuông (cm được theo tứ giác nội tiếp) (2)
Từ (1) và (2) \(\Rightarrow\) SACED = SACD + SDCE = \(\dfrac{1}{2}\)AH.CD + \(\dfrac{1}{2}\)CD.DE = \(\dfrac{1}{2}\)CD.(AH + DE) (3)
Xét tam giác CED có: O là trung điểm của CE (gt)
H là trung điểm của CD (cma)
\(\Rightarrow\) OH là đường trung bình của tam giác CED (đ/n)
\(\Rightarrow\) OH = \(\dfrac{1}{2}\)DE
hay 2OH = DE
lại có AH = OH (H là trung điểm của OA theo gt)
\(\Rightarrow\) 2AH = DE (4)
Từ (3) và (4)
\(\Rightarrow\) SACED = \(\dfrac{1}{2}\)CD(AH + 2AH) = \(\dfrac{1}{2}\)CD.3AH = AH.SACD
Chúc bn học tốt! (Ko bt phần tính S kia cần gì thêm nx ko?)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
OH là một phần đường kính
CD là dây
OH\(\perp\)CD tại H
Do đó: H là trung điểm của CD
Xét ΔACD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔACD cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
a: PM\(\perp\)MQ
MQ\(\perp\)AB
Do đó: PM//AB
Xét tứ giác PMIO có
IO//MP
\(\widehat{PMI}=90^0\)
Do đó: PMIO là hình thang vuông
b: ΔMPQ vuông tại M
=>ΔMPQ nội tiếp đường tròn đường kính PQ
mà ΔMPQ nội tiếp (O)
nên O là trung điểm của PQ
=>P,Q,O thẳng hàng
c: ΔAOC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(R^2+R^2=\left(a\sqrt{2}\right)^2=2a^2\)
=>\(R=a\)
Kẻ OH\(\perp\)AC
=>d(O;AC)=OH
Xét ΔOAC vuông tại O có OH là đường cao
nên \(OH\cdot AC=OA\cdot OC\)
=>\(OH\cdot a\sqrt{2}=a\cdot a=a^2\)
=>\(OH=\dfrac{a}{\sqrt{2}}\)
Vậy: Khoảng cách từ O đến AC là \(\dfrac{a\sqrt{2}}{2}\)
a: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
Xét ΔCOA có
CI vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCOA cân tại C
Xét ΔCAO cân tại C có OA=OC
nên ΔCAO đều
=>\(\widehat{OCA}=60^0\)
Xét tứ giác OCAD có
I là trung điểm chung của OA và CD
Do đó: OCAD là hình bình hành
mà OC=OD
nên OCAD là hình thoi
=>\(\widehat{OCA}+\widehat{COD}=180^0\)
=>\(\widehat{COD}=120^0\)
Xét ΔOCD có \(\dfrac{CD}{sinCOD}=\dfrac{OC}{sinODC}\)
=>\(\dfrac{CD}{sin120}=\dfrac{R}{sin30}\)
=>\(CD=2R\cdot sin120=\sqrt{3}\cdot R\)
b: ΔOAC đều
=>\(\widehat{AOC}=60^0\)
c: \(\widehat{COD}=120^0\)
=>số đo cung nhỏ CD là 120 độ
Số đo cung lớn CD là:
360 độ-120 độ=240 độ