K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

a) Xét ΔABC và ΔHBA có

ˆBAC=ˆBHA(=900)BAC^=BHA^(=900)

ˆABHABH^ chung

Do đó: ΔABC∼ΔHBA(g-g)

b) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=202+152=625⇔BC2=202+152=625

hay BC=√625=25cmBC=625=25cm

Ta có: ΔABC∼ΔHBA(cmt)

ACHA=BCBAACHA=BCBA

hay 15AH=252015AH=2520

⇔AH=15⋅2025=30025=12cm⇔AH=15⋅2025=30025=12cm

Vậy: BC=25cm; AH=12cm

d) Ta có: ˆCAH+ˆBAH=ˆBACCAH^+BAH^=BAC^(tia AH nằm giữa hai tia AB,AC)

ˆCAD=900−ˆBAHCAD^=900−BAH^(1)

Ta có: ΔAHB vuông tại H(AH⊥BC)

nên ˆABH+ˆBAH=900ABH^+BAH^=900(hai góc nhọn phụ nhau)

hay ˆABC=900−ˆBAHABC^=900−BAH^(2)

Từ (1) và (2) suy ra ˆCAD=ˆABCCAD^=ABC^

Ta có: CD//AB(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: CD⊥AC(định lí 2 từ vuông góc tới song song)

Xét ΔBAC và ΔACD có

ˆABC=ˆCADABC^=CAD^(cmt)

ˆBAC=ˆACD(=900)BAC^=ACD^(=900)

Do đó: ΔBAC∼ΔACD(g-g)

ABAC=ACCDABAC=ACCD

hay AC2=AB⋅DCAC2=AB⋅DC(đpcm)

a: Xét ΔBAC có

N là trung điểm của AB

NI//BC

Do đó: I là trung điểm của AC

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCAB vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(CH\cdot CB=AC^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCDB vuông tại C có CA là đường cao ứng với cạnh huyền DB, ta được:

\(AD\cdot AB=CA^2\left(2\right)\)

Từ (1) và (2) suy ra \(CH\cdot CB=AD\cdot AB\)

10 tháng 10 2022

nho thay co giup em voi em dungf tu giac noi tiep khong dung

18 tháng 7 2021

Bạn tham khảo bài tại link :

https://olm.vn/hoi-dap/detail/244883081409.html

hoặc :

Câu hỏi của Vũ Nguyễn Phương Thảo - Toán lớp 8 - Học trực tuyến OLM

Hok tốt

18 tháng 7 2021

Trả lời :

Bạn vào hoc 24 có bài đấy

4 tháng 8 2021

Cho mình xin câu D thoi ạ

CM dễ vãi, AB, AC cắt nhau. Đường kính cất đường tròn tại giao D vs E

30 tháng 3 2019

Bạn giải cau 8b đi

loading...  loading...  loading...  loading...