K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi H,K lần lượt là trung điểm của AB,CD

ΔAOB cân tại O

mà OH là đường trung tuyến

nên OH vuông góc AB

=>d(O;AB)=OH

ΔOCD cân tại O

mà OK là đường trung tuyến

nên OK vuông góc CD

=>d(O;CD)=OK

H là trung điểm của AB

=>HA=HB=40/2=20cm

K là trung điểm của CD

=>KC=KD=48/2=24cm

ΔOHA vuông tại H

=>OH^2+HA^2=OA^2

=>OH^2=25^2-20^2=225

=>OH=15(cm)

ΔOKC vuông tạiK

=>OK^2+KC^2=OC^2

=>OK=7(cm)

OH vuông góc AB

AB//CD

=>OH vuông góc CD

mà OK vuông góc CD

nên O,H,K thẳng hàng

=>HK=OH+OK=7+15=22cm

=>d(AB;CD)=22cm

29 tháng 9 2019

Kẻ OK ⊥ CD ⇒ CK = DK = (1/2).CD

Kẻ OH ⊥ AB ⇒ AH = BH = (1/2).AB

Vì AB // CD nên H, O, K thẳng hàng

Áp dụng định lí Pitago vào tam giác vuông OBH ta có:

O B 2 = B H 2 + O H 2

Suy ra: O H 2 = O B 2 - B H 2 = 25 2 - 20 2 = 225

OH = 15 (cm)

Áp dụng định lí Pitago vào tam giác vuông ODK ta có:

O D 2 = D K 2 + O K 2

Suy ra: O K 2 = O D 2 - D K 2 = 25 2 - 24 2  = 49

OK = 7 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Trường hợp O nằm giữa hai dây AB và CD (hình a):

HK = OH + OK = 15 + 7 = 22 (cm)

* Trường hợp O nằm ngoài hai dây AB và CD (hình b):

HK = OH – OK = 15 – 7 = 8 (cm)

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

14 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

13 tháng 6 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = √576 = 24

=> CD = 2CN = 48cm

6 tháng 4 2017

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

O M 2   =   O A 2   –   A M 2   =   25 2   –   20 2 =   22 2

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

C N 2   =   C O 2   –   O N 2   =   25 2   –   7 2   =   576

=> CN = √576 = 24

=> CD = 2CN = 48cm

15 tháng 7 2020

22cm A M B C N D O

Kẻ \(OM\perp AB , ON\perp CD\)

Ta thấy M, O, N thẳng hàng. Ta có:

\(AM=\frac{1}{2}AB=20cm ; MN=22cm\)

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = \(\sqrt{225}\) = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = \(\sqrt{576}\) = 24

=> CD = 2CN = 48cm

2 tháng 9 2021

*, Kẻ OH vuông AB, H \(\in\)AB 

=> H là trung điểm AB 

=> HB = AB/2 = 40/2 = 20 cm 

Theo định lí Pytago tam giác OBH vuông tại H 

\(OH=\sqrt{OB^2-HB^2}=15\)cm 

*, Kẻ OT vuông CD, T \(\in\)CD

=> T là trung điểm CD 

=> TD = DC/2 = 48/2 = 24 cm 

Theo định lí Pytago tam giác ODC vuông tại T

\(OT=\sqrt{OD^2-DT^2}=7\)cm 

 

30 tháng 4 2021

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = √576 = 24

=> CD = 2CN = 48cm

16 tháng 8 2021

Ta tính được khoảng cách OH từ O đến AB bằng 15cm. Gọi K là giao điểm của HO và CD. Do CD / / AB nên OK \perp CD. Ta có:

OK=HK-OH=22-15=7(cm)

Từ đó tính được CD=48cm

25 tháng 4 2017

Vẽ OH⊥AB, đường thẳng OH cắt CD tại K. Hãy chứng minh

OK⊥CD, KC=KD và AH=HB.

Tính được OH=15, suy ra OK=7.

Từ đó suy ra KD=24, suy ra CD=48.