Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N K H E F I J T P
a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.
Nên tứ giác ACBD là hình vuông.
Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900
=> Tứ giác ACMH nội tiếp đường tròn
Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450
=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.
b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.
Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900
=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE
Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900
Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF
Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)
=> J là trung điểm của HM => Đpcm.
c) Trên tia đối của tia DB lấy T sao cho DT=CM.
Gọi P là hình chiếu của A xuống đoạn MN.
Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT
mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900
=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)
=> ^AMN=^ATN (2 góc tương ứng) hay ^AMP=^ATD
=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).
Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.
Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi
=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.
Vậy...
ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!
- Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
- Đang học tại: Trường THCS Lập Thạch
- Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
- Điểm hỏi đáp: 16SP, 0GP
- Điểm hỏi đáp tuần này: 1SP, 0GP
- Thống kê hỏi đáp
GỢI Ý:
*Bản chất câu hỏi của bài toán là chứng minh N,E,C thẳng hàng.
*Chứng minh AMBN là hình vuông \(\Rightarrow\widehat{OMB}=\widehat{OBM}=45^0\).
*Chứng minh tứ giác OBHM nội tiếp.
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{OHB}\\\widehat{OBM}=\widehat{OHM}\end{matrix}\right.\)
Suy ra ME là phân giác của tam giác BHM.
\(\Rightarrow\dfrac{ME}{BE}=\dfrac{MH}{BH}\)
△MHB∼△CMB nên \(\dfrac{MH}{BH}=\dfrac{CM}{BM}\)
\(\Rightarrow\dfrac{ME}{BE}=\dfrac{CM}{BM}=\dfrac{CM}{BN}\)
\(\Rightarrow\)△CME∼△NBE (c-g-c).
\(\Rightarrow\widehat{CEM}=\widehat{NEB}\) nên C,E,N thẳng hàng.
*NC cắt (O) tại D. \(\Rightarrow\widehat{MDN}=90^0=\widehat{MDC}\)
\(\Rightarrow\)Tứ giác MDHC nội tiếp
\(\Rightarrow\)D thuộc đường tròn ngoại tiếp tam giác MHC nên D trùng K.
\(\Rightarrowđpcm\)