Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
DC,DA là tiếp tuyến
=>DC=DA và OD là phân giác của góc COA
=>OD vuông góc AC
Xét (O) có
EC,EB là tiếp tuyến
=>EB=EC và OE là phân giác của góc COB(2)
=>OE là trung trực của BC
=>OE vuông góc CB
AD+BE=DC+CE=DE
b: Từ (1), (2) suy ra góc DOE=1/2*180=90 độ
Xét tứ giác CMON có
góc CMO=góc CNO=góc MON=90 độ
=>CMON là hình chữ nhật
c: OM*OD+ON*OE
=OC^2+OC^2
=2*R^2ko đổi
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Vì DA,DM là tiếp tuyến \(\Rightarrow OD\) là phân giác \(\angle MOA\)
\(\Rightarrow\angle MOD=\dfrac{1}{2}\angle MOA\)
Vì CB,CM là tiếp tuyến \(\Rightarrow OC\) là phân giác \(\angle MOB\)
\(\Rightarrow\angle MOC=\dfrac{1}{2}\angle MOB\)
\(\Rightarrow\angle MOC+\angle MOD=\dfrac{1}{2}\left(\angle MOA+\angle MOB\right)\)
\(\Rightarrow\angle COD=\dfrac{1}{2}\angle AOB=\dfrac{1}{2}.180=90\)
c) Vì \(\angle COD=90\Rightarrow O\in\) đường tròn đường kính CD
Gọi E là tâm đường tròn đường kính CD \(\Rightarrow E\) là trung điểm CD
Ta có: E là trung điểm CD,O là trung điểm AB và ABCD là hình thang
\(\Rightarrow EO\parallel AD\) \(\Rightarrow EO\bot AB\Rightarrow AB\) là tiếp tuyến của đường tròn đường kính CD
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Xét tứ giác OMCN có:
∠(OMC) = 90 0 (AC ⊥ OD)
∠(ONC) = 90 0 (CB ⊥ OE)
∠(NCM) = 90 0 (AC ⊥ CB)
⇒ Tứ giác OMCN là hình chữ nhật
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\widehat{IAF}=\widehat{CAF}\)
\(\widehat{CFA}+\widehat{CAF}=90^0\)
\(\widehat{BAF}+\widehat{IAF}=90^0\)
\(\Rightarrow\widehat{CFA}=\widehat{BAF}\)
c.
O là trung điểm AB, G là trung điểm AI \(\Leftrightarrow\) OG là đường trung bình ABI
\(\Rightarrow OG//BI\Rightarrow OG\perp AC\)
Mà \(OA=OC\Rightarrow OG\) là trung trực AC
\(\Rightarrow AG=CG\Rightarrow CG\) là tiếp tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
O A B x C E D M
a, xét tg AEO và CEO có : EO chung
^AEO = ^CEO = 90
OA = OC = r
=> Tg AEO = tg CEO (ch-cgv)
=> ^AOE = ^COE
xét tg MAO và tg MCO có : Mo chung
OA = OC = r
=> tg MAO = tg MCO (cg-c)
=> ^MAO = ^MCO
mà ^MAO = 90
=> ^MCO = 90 => OC _|_ MC
có C thuộc 1/2(o)
=> MC là tt của 1/2(o)
b, xét tứ giác MCOA có : ^MCO = ^MAO = 90
=> ^MCO + ^MAO = 180
=>MCOA nội tiếp
+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM
có MEA = 90 do AC _|_ MO (Gt)
=> ^ADM = ^MEA = 90
=> MDEA nt
Xét (O) có
ΔABC nội tiếp
AB là đường kính
=>ΔABC vuông tại C
=>BC vuông góc AC
Xét ΔKAB vuông tại A có AC là đường cao
nên BC*BK=BA^2=4*R^2