Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C
\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)
Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)
\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)
\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)
\(\Rightarrow\Delta ABD\) cân tại B
b.
\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)
\(\Rightarrow BE\) là đường cao trong tam giác BAD
Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến
\(\Rightarrow E\) là trung điểm AD
Lại có O là trung điểm AB
\(\Rightarrow OE\) là đường trung bình tam giác ABD
\(\Rightarrow OE||BD\)
c.
Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)
\(\Rightarrow I\) là trực tâm tam giác ABD
\(\Rightarrow DI\) là đường cao thứ 3
\(\Rightarrow DI\perp AB\)
d.
Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)
\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)
\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)
\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)
Xét tam giác vuông ABE có:
\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)
a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
a) Từ E vẽ đường thẳng vuông góc với Ax tại N
Ta có EN song song AB ( cùng \(\perp\) Ax)
Xét ΔNAE vuông tại N và ΔCAD vuông tại C, có
\(\widehat{NAE}\) = \(\widehat{CAD}\) (AD là tia phân giác của \(\widehat{CAx}\))
→ΔNAE đồng dạng ΔCAD (gn)
→\(\widehat{AEN}\) = \(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{AEN}\) = \(\widehat{BAE}\) ( 2goc1 so le trong của eN song song AB)
→\(\widehat{ADC}\) = \(\widehat{BAE}\) (cùng bằng \(\widehat{AEN}\) )
→ΔBAD cân tại B
Ta lại có ΔOAE cân tại O (OA=OE)
→\(\widehat{OAE}\) = \(\widehat{OEA}\) mà \(\widehat{BAE}\) =\(\widehat{ADC}\) (cmt)
→\(\widehat{OEA}\) = \(\widehat{ADC}\) (cùng bằng \(\widehat{OAE}\) )
mà 2 góc này nằm ở vị trí đồng vị của OE và BD→OE song song BD
b)Xét ΔACB nội tiếp (O) có đường kính AB
→ΔACB vuông tại C có cạnh huyền AB
Xét ΔAEB nội tiếp (O) có đường kính AB
→ΔAEB vuông tại E có cạnh huyền AB
Xét ΔADB có 2 đường cao Ac và BE cắt nhau tại I
→I là trực tâm→DI là đường cao trong ΔADB→DI \(\perp\) AB
a) Ta có Co là phân giác của góc AOM,OD ,là phân giác cảu góc BOM =>COM+DOM=1/2(AOM+BOM)=1/2*180=90
b) ta có M thuộc (O mà AB là đường kính => AMB là tam giác vuông=> góc AMB vuông;DM=DB,OM=OB=> Od là đường trung trực của MB => OD vuông góc Mb => góc MKO =90
c) Vì OM vuông góc với CD, áp dụng hệ thức lượng cho tam giác COD(call of duty)=> CM*MD=MO^2
mà CA=CM,MD=DB(TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU) =>CA*BD=OM^2 mà OM=AB/2 =>AC*BD=(AB^2)/4vì AB cố địnhnên h AC,BD không đổi
d)P là điểm nào
Bài làm:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi
~Học tốt!!~