\(\left(O\right)\) đường kính AB. Lấy điểm C trên đoạn thẳng AO (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 4 2018

Xin lỗi bạn vì bây giờ mình mới onl để trả lời được .

Lời giải:

Góc với đường tròn

Bài này mấu chốt là việc chỉ ra $D,F,B$ thẳng hàng.

Theo tính chất góc nội tiếp chắn đường kính suy ra \(\widehat{ANB}=90^0\) hay \(AN\perp EB\)

Xét tam giác $EAB$ có \(AN\perp EB, EC\perp AB\) và \(AN\cap EC=F\) nên $F$ là trực tâm của tam giác $EAB$

Do đó: \(BF\perp EA\)

Mà \(BD\perp EA\) do \(\widehat{ADB}=90^0\) (góc nội tiếp chắn đường kính)

\(\Rightarrow BF\parallel BD\Rightarrow B,D,F\) thẳng hàng.

\(\Rightarrow \widehat{FDA}=90^0\)

Xét tứ giác $FDAC$ có \(\widehat{FDA}+\widehat{FCA}=90^0+90^0=180^0\) nên là tứ giác nội tiếp

\(\Rightarrow \widehat{DCF}=\widehat{DAF}=\widehat{DAN}(1)\)

Mặt khác:

Tổng hai góc đối \(\widehat{FCB}+\widehat{FNB}=90^0+90^0=180^0\) nên tứ giác $FNBC$ nội tiếp

\(\Rightarrow \widehat{NCF}=\widehat{NBF}=\widehat{NBD}(2)\)

Từ \((1); (2)\) kết hợp với \(\widehat{DAN}=\widehat{NBD}\) (hai góc nội tiếp chắn cung DN) suy ra \(\widehat{DCF}=\widehat{NCF}\), hay $CF$ là tia phân giác của góc \(\widehat{DCN}\).

Ta có đpcm.

2 tháng 4 2018

@Nguyễn Thanh Hằng , @Aki Tsuki, @Akai Haruma, @Nhã Doanh, @Nguyễn Huy Thắng, @Neet, @Ngô Thanh Sang giúp với!!!!!!!!!!!!lolang

19 tháng 4 2020

Gợi ý :

Cậu kẻ thêm các hbh HBMC , IHCN là làm đc nhá'

##

19 tháng 4 2020

tớ củng đang thắc mcs bì nay đây

16 tháng 11 2021

Dễ mà tự làm đi =))

30 tháng 6 2020

Để t nghĩ một lúc đã

28 tháng 5 2017

Ta có:

\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)

\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)

\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)

\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)