Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của O 2
Tương tự PQ cũng là tiếp tuyến ( O 1 )
a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.
Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên , do đó APQB là tứ giác nội tiếp.
c) Ta có
nên PQ tiếp xúc nửa đường tròn (O1) tại P.
Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)
a) Tứ giác EFMK có góc E và góc M vuông (vì đều bằng các góc chắn nửa đường tròn) nên là tứ giác nội tiếp.
b) Ta có
(Góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung);
( góc nội tiếp cùng chắn cung )
mà ( là tia phân giác góc IAM)
nên , hay BE là tia phân giác góc ABM.
Mặt khác BE cũng là đường cao trong tam giác ABF nên tam giác ABF cân tại B.
c) Tam giác HAK có AE vừa là phân giác vừa là đường cao nên nó cân tại A. Suy ra E là trung điểm HK.
Tứ giác HFKA có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.
d) HFKA là hình thoi nên FK // HA, suy ra tứ giác IFKA là hình thang.
Để IFKA nội tiếp được đường tròn thì nó phải là hình thang cân, hay tam giác MIA vuông cân tại M.
Khi đó, tam giác MAB vuông cân tại M. Do đó M là điểm chính giữa cung nửa đường tròn AB.
a: Xét tứ giác ACMO có
\(\widehat{CAO}+\widehat{CMO}=180^0\)
Do đó: ACMO là tứ giác nội tiếp
b:
Xét tứ giác DMOB có
\(\widehat{DMO}+\widehat{DBO}=180^0\)
Do đó: DMOB là tứ giác nội tiếp
Suy ra: \(\widehat{ODM}=\widehat{OBM}\)
mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)
nên \(\widehat{CAM}=\widehat{ODM}\)
a: Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
=>ΔMAO=ΔMCO
=>góc MCO=90 độ
góc MAO+góc MCO=180 độ
=>MAOC nội tiếp đường tròn đường kính MO
=>I là trung điểm của MO
b: góc MCO=90 độ
=>MC là tiếp tuyến của (O)
Xét ΔMCD và ΔMBC có
góc MCD=góc MBC
góc CMD chung
=>ΔMCD đồng dạng với ΔMBC
=>MC/MB=MD/MC
=>MC^2=MB*MD