K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

B C H K A M O M'

a/ Dễ dàng chứng minh được OA chính là đường trung bình của hình thang HBCK, suy ra A là trung điểm HK => A chính là tâm của đường tròn đường kính HK.

Để chứng minh đường tròn đường kính HK tiếp xúc với BC, ta sẽ chứng minh BC chính là tiếp tuyến của đường tròn (A) tại M hay AM = AK.

Vì HK là tiếp tuyến của (O) tại A nên : \(\widehat{CAK}=\frac{1}{2}\text{sđcungAC}=\widehat{ABC}\left(1\right)\)

Mặt khác, tam giác BAC vuông tại A vì cạnh huyền BC là đường kính của đường tròn (O) . Ta dễ dàng suy ra \(\widehat{ABC}=\widehat{CAM}\left(2\right)\)

Từ (1) và (2) ta có \(\widehat{CAK}=\widehat{CAM}\)

Xét hai tam giác vuông CAM và tam giác vuông CAK có CA là cạnh chung , góc CAM = góc CAK nên \(\Delta CAK=\Delta CAM\left(ch.gn\right)\Rightarrow AK=AM\)

Từ đó suy ra đpcm.

b/ Vì BHKC là hình thang nên \(S_{BHKC}=\frac{\left(BH+CK\right).HK}{2}=OA.HK\)

Từ câu a) ta chứng minh được \(AK=AM\) nên \(HK=2AK=2AM\le2OA\) (hằng số)

=>\(S_{BHKC}\le OA.2OA=2OA^2=2\left(\frac{BC}{2}\right)^2=\frac{BC^2}{2}\) . Dấu "=" xảy ra khi A là điểm chính giữa cung BC.

Vậy ...............................

c/ Đề sai , bởi vì góc MAO có đơn vị độ, còn vế bên phải lại là một tỉ số .

 

 

23 tháng 10 2016

@Hoàng Lê Bảo Ngọc

bn xem có phải k sao cô minh cho đề thế nhỉ

19 tháng 12 2017

bn tựu vẽ hk nha

a, dễ cm tứ giác ABCD là hình thang

ta có AD//MO//CB(cùng vuông góc vs DC) 

    A0=B0  

từ đây suy ra DM=MC

B, TỪ M KẺ MH VUÔNG GÓC VS AB

TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)

LẠI CÓ GÓC AMO=GÓC MAO( do  MO=AO)  (2)

TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO

                   LẠI CÓ GÓC D=GÓC MHA=90

SUY RA TAM GIAC DMA=TAM GIAC HMA

SUY RA AD=AH

tự BC=HB

TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI

C, TA CÓ MH=DM=MC(CMT)

LẠI CÓ MHVUOONG GÓC VS AB 

SUY RA DƯỜNG TRÒN CD TX VS AB

D, TRONG HT VUÔNG ABCD CÓ DC<=AB

SUY RA  SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)

DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB

5 tháng 11 2016

A B H K O M x y N

a/ Ta có : \(\hept{\begin{cases}AH\text{//}OM\text{//}BK\\OA=OB\end{cases}}\) \(\Rightarrow\)OM là đường trung bình của hình thang ABKH

\(\Rightarrow\)\(AH+BK=2OM=2R\) (không đổi)

b/ Từ M hạ MN vuông góc với AB tại N (1)

Ta sẽ chứng minh MN = MK

Xét trong (O;R) thì : \(\widehat{BMK}=\widehat{MAB}\) (cùng chắn cung MB)

Mà : \(\hept{\begin{cases}\widehat{BMK}+\widehat{MBK}=90^o\\\widehat{MAB}+\widehat{MBA}=90^o\end{cases}}\) \(\Rightarrow\)\(\widehat{MBA}=\widehat{MBK}\)

Xét hai tam giác vuông NBM và KBM có MB là cạnh huyền (chung) , \(\widehat{MBA}=\widehat{MBK}\)

\(\Rightarrow\)\(\Delta NBM=\Delta KBM\) (ch.gn)

\(\Rightarrow\) MN = MK (2)

Từ (1) và (2) suy ra đpcm.

c/ Vì ABKH là hình thang vuông nên \(S_{ABKH}=\frac{1}{2}\left(AH+BK\right).HK=\frac{1}{2}.2OM.HK\)

\(=\left(2MN\right).OM\) . Mà OM = R không đổi, vậy \(maxS_{ABKH}\Leftrightarrow maxMN\Leftrightarrow MN=OM\)\(\Leftrightarrow\)M là điểm chính giữa cung AB

Khi đó thì : \(S_{ABKH}=2OM.OM=2R^2\)

4 tháng 11 2016

không biết

27 tháng 11 2021

a, 700 góc nào bạn ? 

b, Vì AB là tiếp tuyến (O) => ^ABO = 900 

AO giao BC = K 

AB = AC ; OB = OC = R 

Vậy OA là đường trung trực đoạn BC 

Xét tam giác ABO vuông tại B, đường cao BK

Áp dụng định lí Pytago tam giác ABO vuông tại B 

\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm 

Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm 

Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm 

Chu vi tam giác ABC là :

 \(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm 

16 tháng 8 2016

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2

11 tháng 2 2017

ok