Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)
$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$
Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.
b)
Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:
\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$
\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$
Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$
c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.
Ta có:
\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$
Mặt khác:
$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$
$=2\widehat{IDH}+2\widehat{CDI}$
$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$
$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$
$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$
Từ $(1);(2)$ suy ra đpcm.
Để chứng minh 5 điểm trên cùng thuộc một đường tròn, ta chứng minh góc BCH = góc BIH = góc BOH.
Thật vậy, theo chứng minh b, E là tâm đường tròn nội tiếp tam giác BCH nên CE là phân giác góc BCH. Từ đó góc BCH = 2 góc BCA.
Ta có góc BCA bằng góc BDA vì cùng chắn cung BA, nên góc BCH = 2 góc BDA (1)
Tam giác OBD cân tại O nên BOH = 2 góc BDA.(2)
Tam giác EHD vuông tại H , HI là trung tuyến ứng với cạnh huyền nên IH = ID, từ đó góc BIH = 2 góc BDA.(3)
Từ (1), (2), (3) ta suy ra 3 góc trên bằng nhau hay 5 điểm B, C, I, O, H cùng thuộc một đường tròn.
Lời giải:
a.
Ta thấy $\widehat{ACB}=\widehat{ADB}=90^0$ (góc nội tiếp chắn nửa đường tròn)
$\Rightarrow \widehat{ECF}=180^0-\widehat{ACB}=180^0-90^0=90^0$; $\widehat{EDF}=180^0-\widehat{ADB}=180^0-90^0=90^0$
Tứ giác $ECFD$ có tổng 2 góc đối $\widehat{ECF}+\widehat{EDF}=90^0+90^0=180^0$ nên $ECFD$ là tứ giác nội tiếp.
b.
Vì $ECFD$ là tứ giác nội tiếp nên $\widehat{AEF}=\widehat{CEF}=\widehat{CDF}=\widehat{ADC}$ (góc nt chắn cung $CF$)