K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

a: Xét (O) có

CA,CE là các tiếp tuyến

Do đó: CA=CE và OC là phân giác của góc AOE

Xét (O) có

DE,DB là các tiếp tuyến

Do đó: DE=DB và OD là phân giác của góc EOB

Ta có: CA+DB

=CE+DE

=CD

b: Ta có: OC là phân giác của góc AOE

=>\(\widehat{AOE}=2\cdot\widehat{EOC}\)

OD là phân giác của góc EOB

=>\(\widehat{EOB}=2\cdot\widehat{EOD}\)

Ta có: \(\widehat{AOE}+\widehat{BOE}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{EOC}+2\cdot\widehat{EOD}=180^0\)

=>\(2\cdot\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

1: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)

=>góc COD=1/2*góc AOB=90 độ

2: CD=CM+MD

mà CM=CA và MD=DB

nên CD=CA+DB

3: AC*BD=CM*MD

Xét ΔOCD vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2 không đổi

31 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất tiếp tuyến, ta có:

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Suy ra tứ giác ABDC là hình thang

Gọi I là trung điểm của CD

Khi đó OI là đường trung bình của hình thang ABDC

Suy ra: OI // AC ⇒ OI ⊥ AB

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)

Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.

Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.

20 tháng 10 2023

A B x y C D M O

a/

Xét tg vuông OAC và tg vuông OMC có

OA=OM=R

OC chung

=> tg OAC = tg OMC  (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)

Tương tự ta cũng có

tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)

\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)

b/

AB+BD nhỏ nhất khi \(M\equiv B\)

Chọn B

20 tháng 12 2021

b: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

OC là phân giác của \(\widehat{AOM}\)

nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

Ta có: OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

b: Xét tứ giác BDMO có

\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)

=>BDMO là tứ giác nội tiếp đường tròn đường kính OD

=>B,D,M,O cùng nằm trên đường tròn đường kính OD

Bán kính là \(R'=\dfrac{OD}{2}\)

c: Ta có: CD=CM+MD

mà CM=CA 

và DM=DB

nên CD=CA+DB

d,e: Gọi N là trung điểm của CD

Xét hình thang ABDC có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

Ta có: ON//AC

AC\(\perp\)AB

Do đó: ON\(\perp\)AB

Ta có: ΔCOD vuông tại O

=>ΔCDO nội tiếp đường tròn đường kính CD

=>ΔCOD nội tiếp (N)

Xét (N) có

NO là bán kính 

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)

f: Xét ΔNCA và ΔNBD có

\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔNCA đồng dạng với ΔNBD

=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)

nên MN//AC