K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a) Do MA=MB zà AB zuông góc zới DE tại M nên ta có

DM=ME=> ADBE là hình bình hành

mà BD=BE ( AB là đường trung trực của DE )

=> ADBE là hình thoi

b) BC là đường kính ; I thuộc (O')

nên góc BID=1v

mà góc DMB=1v(gt) 

=>  góc BID+DMB=2v

=> đpcm

c)Do AEBD là hình thoi => BE//AD mà AD zuông góc zới DC ( góc nội tiếp chắn nửa đường tròn )

=>BE zuông góc zới DC, CM zuông góc zới DE (gt) 

Do BIC=1v => BI vuông góc với DC.

QUa 1 điểm B có 2 đường thẳng BI và BE cùng vuông góc với DC \(n^anBI\equiv BE\)hay B;I;E thẳng hàng (dpcm)

Do M là trung điểm của DE , tam giác EID zuông ở I => MI là đường trung tuyến ứng zới cạnh huyền của tam giác zuông DEI

=> MI=MD (dpcm)

d) 

 tam giác MCI ~ tam giác DCB  ( góc C chung , góc BDI  =góc IMB cùng chắn cung MI do DMBI nội tiếp)

=> dpcm ( chắc bạn biết làm đoạn này)

e) ta có tam giác O'IC cân ở O' => O'IC=góc O'Ci

tam giác MDI cân ở M =: góc MID= góc MDI

từ đó suy ra góc MID + O'IC= MDI+ góc O'CI=1v

zậy MI zuông góc zới O'I tại I nằm trên đường tròn (O')

=> MI là tiếp tuyến của (O')

3 tháng 5 2021

câu a là cmr tứ giác PHIB nội tếp