Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi I là Trung điểm CD => IC = ID
Xét hình thang AEFB , I là trung điểm EF => IE=IF
Từ đó suy ra CE=DF
b, Ta có E A B ^ và F B A ^ bù nhau nên có một góc tù và một góc nhọn
Giả sử E A B ^ > 90 0 => ∆EAO có OE > AO = R => E ở ngoài đường tròn mà OE = OF nên F cũng ở ngoài đường tròn
a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)
\(\Rightarrow\)\(\Delta ABE\perp E\)
\(\Rightarrow\)\(AEB\lambda=90\)độ
Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)
Xét (O) có
\(\widehat{AEB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{AEB}=90^0\)
Xét tứ giác BEFI có
\(\widehat{BEF}+\widehat{FIB}=180^0\)
nên BEFI là tứ giác nội tiếp
hay B,E,F,I cùng thuộc 1 đường tròn
a) Xét (O) có: AB đường kính (gt), F ϵ (O)
⇒ △ BAF vuông tại F.
⇒ BF vuông góc với AF tại F. hay BF vuông góc với KF
Mà CD vuông góc với KF tại K (gt)
⇒ CD//BF
⇒ 2 cung nhỏ CF và BD chắn 2 dây // của (O) sẽ bằng nhau.
⇒ Đcpcm
b) Ta thấy CDBF là hình thang cân ( CD//BF, CF = BD )
⇒ 2 đường chéo BC = DF. (1)
Mà △ BCE cân tại B ( vì có BH vừa là đ/c, vừa là đường trung tuyến của △)
⇒BC=BE.(2)
Từ (1) và (2) ⇒ DF = BE.
⇒ cung DF = cung BE
Cộng 2 vế trên với cung EF ta đc:
cung DE = cung BF
⇒ DE = BF
Chứng minh có bạn câu a,b trước. Câu c tìm không ra tam giác ~ . Chưa ra cách khác
O A B C D H M E F K
(Vẽ đẹp hơn rồi kk)
a/ Ta có \(\widehat{AEB}=90\)độ (Góc nội tiếp chắn nửa đường tròn)
Xét tứ giác \(BEHF\)có: \(\hept{\begin{cases}\widehat{AEB}=90\left(cmt\right)\\\widehat{FHB}=90\left(gt\right)\end{cases}}\)
\(\Rightarrow\widehat{AEH}+\widehat{FHB}=90+90=180\)độ
\(\Rightarrow\)Tứ giác \(BEHF\)nội tiếp
b/ (Nối giùm mình K với A)
Ta có: \(\widehat{KEA}=\widehat{KBA}\)( Tứ giác \(KEAB\)nt, cùng chắn \(\widebat{AK}\))
Mà: \(\widehat{AEH}=\widehat{KBA}\)( Tứ giác \(BEHF\)nt, cùng chắn \(\widebat{FH}\))
\(\Rightarrow\widehat{KEA}=\widehat{AEH}\)
\(\RightarrowĐpcm\)